Serum amyloid A (SAA) is the major acutephase protein in man and most mammals.Recently we demonstrated that SAA binds to many Gram-negative bacteria including Escherichia coli and Pseudomonas aeruginosa through outer membrane protein A (OmpA) family members. Therefore we investigated whether SAA altered the response of innate phagocytic cells to bacteria. Both the percentage of neutrophils containing E coli and the number of bacteria per neutrophil were greatly increased by SAA opsonization, equivalent to the increase seen for serum opsonization. In contrast, no change was seen for Streptococcus pneumoniae, a bacteria that did not bind SAA. Neutrophil reactive oxygen intermediate production in response to bacteria was also increased by opsonization with SAA. SAA opsonization also increased phagocytosis of E coli by peripheral blood mononuclear cellderived macrophages. These macrophages showed strong enhancement of TNF-␣ and IL-10 production in response to SAA-opsonized E coli and P aerugi-
Serum amyloid A (SAA) is the major acute phase protein in man and most mammals. We observed SAA binding to a surprisingly large number of Gram-negative bacteria, including Escherichia coli, Salmonella typhimurium, Shigella flexneri, Klebsiella pneumoniae, Vibrio cholerae, and Pseudomonas aeruginosa. The binding was found to be high affinity and rapid. Importantly, this binding was not inhibited by high density lipoprotein with which SAA is normally complexed in serum. Binding was also observed when bacteria were offered serum containing SAA. Ligand blots following SDS-PAGE or two-dimensional gels revealed two major ligands of 29 and 35 kDa that bound SAA when probing with radiolabeled SAA or SAA and monoclonal anti-SAA. Following fractionation the ligand was found in the outer membrane fraction of E. coli and was identified by matrix-assisted laser desorption ionization time-offlight mass spectrometry to be outer membrane protein A (OmpA). OmpA-deficient E. coli did not bind SAA, and following purification of OmpA the protein retained binding activity. The ligands on other bacteria were likely to be homologues of OmpA because wild type, but not OprF-deficient, P. aeruginosa bound SAA.
Objective. Elevated serum levels of the acutephase protein serum amyloid A (SAA) are a marker for active rheumatoid arthritis (RA), and SAA can also be found in the tissues of patients with active RA. Based on a number of studies with recombinant SAA (rSAA), the protein has been suggested to be a potent proinflammatory mediator that activates human neutrophils, but whether endogenous SAA shares these proinflammatory activities has not been directly addressed. The present study was undertaken to investigate whether SAA in the plasma of patients with RA possesses proinflammatory properties and activates neutrophils in a manner similar to that of the recombinant protein.Methods. Neutrophil activation was monitored by flow cytometry, based on L-selectin shedding from cell surfaces. Whole blood samples from healthy subjects and from RA patients with highly elevated SAA levels were studied before and after stimulation with rSAA as well as purified endogenous SAA.Results. Recombinant SAA potently induced cleavage of L-selectin from neutrophils and in whole blood samples. Despite highly elevated SAA levels, L-selectin was not down-regulated on RA patient neutrophils as compared with neutrophils from healthy controls. Spiking SAA-rich whole blood samples from RA patients with rSAA, however, resulted in L-selectin shedding. In addition, SAA purified from human plasma was completely devoid of neutrophil-or macrophage-activating capacity.Conclusion. The present findings show that rSAA is proinflammatory but that this activity is not shared by endogenous SAA, either when present in the circulation of RA patients or when purified from plasma during an acute-phase response.
Aims To identify key gaps in the research evidence base that could help to improve the mental well‐being of people with diabetes, and to provide recommendations to researchers and research funders on how best to address them. Methods A 2‐day international research workshop was conducted, bringing together research experts in diabetes and in mental health, people living with diabetes and healthcare professionals. Results The following key areas needing increased financial investment in research were identified: understanding the mechanisms underlying depression; understanding the multifactorial impact of social stigma; improving the language used by healthcare professionals; supporting people who find it difficult to engage with their diabetes; supporting significant others; supporting people with diabetes and eating disorders; improving models of care by learning from best practice; the potential benefits of screening and managing diabetes distress in routine diabetes care pathways; primary prevention of mental health issues at the time of diagnosis of diabetes; establishing the effectiveness of diabetes therapies on mood and other mental health issues; and understanding the impact of current diabetes technologies on mental health. Research recommendations as to how to address each of these priority areas were also developed. Conclusions This inaugural position statement outlines recommendations to address the urgent unmet need related to the mental well‐being of people living with diabetes, and calls on the research community and funders to develop research programmes and strategies to reduce this need.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.