Parameter estimation of various multi-component stationary and non-stationary signals in multiplicative and additive noise is considered in this paper. It is demonstrated that the parameters of complex sinusoidal signal, complex frequency modulated (FM) sinusoidal signal and complex linear chirp signal in presence of additive and multiplicative noise can be estimated using a new definition of the fourth order cumulant (FOC), and the computed accumulated FOC (AFOC). Analytical expressions for the FOC/AFOC of the above signals are derived. The concept of accumulated cumulant is introduced to handle the case of a non-stationary signal, for which the fourth order cumulant may be a function of both time and lag. Simulation study is carried out for all the three signals. In case of complex sinusoidal signals, the resul
ts of parameter estimation show that the proposed method based on the new definition of fourth order cumulant performs better than an existing method based on fourth order statistics. The proposed method can be employed for parameter estimation of non-stationary signals also as mentioned above. For comparison purpose, the Cramer-Rao (CR) bound expressions are derived for all the signals considered for parameter estimation. The simulation results for non-stationary signals are compared with the CR bounds.
The COVID-19 virus is increasingly crucial to human health since new variants appear frequently. Detection of COVID-19 through respiratory sound has been an important area of research. This study analyzes respiratory sounds using novel accumulated bi-spectral features. The principal domain bispectrum is used for computing accumulated bispectrum. The resulting magnitude bispectrum is used in forming the bispectral image. In this work, a convolutional neural network (CNN) and ResNet-50 algorithms are designed to classify respiratory sounds as either COVID-19 or healthy. The performance of the proposed method is compared with the state-of-the-art methods. The proposed CNN-based method achieves the highest accuracy of 87.68% for shallow breath sounds, and ResNet-50 achieves the highest accuracy of 87.62% for deep breath sounds. Similarly, proposed methods gives the improved performance for other respiratory sounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.