The COVID-19 virus is increasingly crucial to human health since new variants appear frequently. Detection of COVID-19 through respiratory sound has been an important area of research. This study analyzes respiratory sounds using novel accumulated bi-spectral features. The principal domain bispectrum is used for computing accumulated bispectrum. The resulting magnitude bispectrum is used in forming the bispectral image. In this work, a convolutional neural network (CNN) and ResNet-50 algorithms are designed to classify respiratory sounds as either COVID-19 or healthy. The performance of the proposed method is compared with the state-of-the-art methods. The proposed CNN-based method achieves the highest accuracy of 87.68% for shallow breath sounds, and ResNet-50 achieves the highest accuracy of 87.62% for deep breath sounds. Similarly, proposed methods gives the improved performance for other respiratory sounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.