Abstract-One class of applications envisaged for the IEEE 802.15.4 LR-WPAN (low data rate -wireless personal area network) standard is wireless sensor networks for monitoring and control applications. In this paper we provide an analytical performance model for a network in which the sensors are at the tips of a star topology, and the sensors need to transmit their measurements to the hub node so that certain objectives for packet delay and packet discard are met.We first carry out a saturation throughput analysis of the system; i.e., it is assumed that each sensor has an infinite backlog of packets and the throughput of the system is sought. After a careful analysis of the CSMA/CA MAC that is employed in the standard, and after making a certain decoupling approximation, we identify an embedded Markov renewal process, whose analysis yields a fixed point equation, from whose solution the saturation throughput can be calculated. We validate our model against ns2 simulations (using an IEEE 802.15.4 module developed by J. Zheng [14]). We find that with the default back-off parameters the saturation throughput decreases sharply with increasing number of nodes. We use our analytical model to study the problem and we propose alternative back-off parameters that prevent the drop in throughput.We then show how the saturation analysis can be used to obtain an analytical model for the finite arrival rate case. This finite load model captures very well the qualitative behavior of the system, and also provides a good approximation to the packet discard probability, and the throughput. For the default parameters, the finite load throughput is found to first increase and then decrease with increasing load. We find that for typical performance objectives (mean delay and packet discard) the packet discard probability would constrain the system capacity. Finally, we show how to derive a node lifetime analysis using various rates and probabilities obtained from our performance analysis model.
We consider a network in which several service providers offer wireless access service to their respective subscribed customers through potentially multi-hop routes. If providers cooperate, i.e., pool their resources, such as spectrum and base stations, and agree to serve each others' customers, their aggregate payoffs, and individual shares, can potentially substantially increase through efficient utilization of resources and statistical multiplexing. The potential of such cooperation can however be realized only if each provider intelligently determines who it would cooperate with, when it would cooperate, and how it would share its resources during such cooperation. Also, when the providers share their aggregate revenues, developing a rational basis for such sharing is imperative for the stability of the coalitions. We model such cooperation using transferable payoff coalitional game theory. We first consider the scenario that locations of the base stations and the channels that each provider can use have already been decided apriori. We show that the optimum cooperation strategy, which involves the allocations of the channels and the base stations to mobile customers, can be obtained as solutions of convex optimizations. We next show that the grand coalition is stable in this case, i.e. if all providers cooperate, there is always an operating point that maximizes the providers' aggregate payoff, while offering each such a share that removes any incentive to split from the coalition. Next, we show that when the providers can choose the locations of their base stations and decide which channels to acquire, the above results hold in important special cases. Finally, we examine cooperation when providers do not share their payoffs, but still share their resources so as to enhance individual payoffs. We show that the grand coalition continues to be stable. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from Abstract-We consider a network in which several service providers offer wireless access service to their respective subscribed customers through potentially multi-hop routes. If providers cooperate, i.e., pool their resources, such as spectrum and base stations, and agree to serve each others' customers, their aggregate payoffs, and individual shares, can potentially substantially increase through efficient utilization of resources and statistical multiplexing. The potential of such cooperation can however be realized only if each provider intelligently determines who it would cooperate with, when it would cooperate, and how it would share its resources during such cooperation. Also, when the providers share their aggregate reve...
Abstract-The proportionally fair sharing of the capacity of a Poisson network using Spatial-Aloha leads to closed-form performance expressions in two extreme cases: (1) the case without topology information, where the analysis boils down to a parametric optimization problem leveraging stochastic geometry; (2) the case with full network topology information, which was recently solved using shot-noise techniques. We show that there exists a continuum of adaptive controls between these two extremes, based on local stopping sets, which can also be analyzed in closed form. We also show that these control schemes are implementable, in contrast to the full information case which is not. As local information increases, the performance levels of these schemes are shown to get arbitrarily close to those of the full information scheme. The analytical results are combined with discrete event simulation to provide a detailed evaluation of the performance of this class of medium access controls.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.