How proteins control the biogenesis of cellular lipid droplets (LDs) is poorly understood. Using Drosophila and human cells, we show here that seipin, an ER protein implicated in LD biology, mediates a discrete step in LD formation—the conversion of small, nascent LDs to larger, mature LDs. Seipin forms discrete and dynamic foci in the ER that interact with nascent LDs to enable their growth. In the absence of seipin, numerous small, nascent LDs accumulate near the ER and most often fail to grow. Those that do grow prematurely acquire lipid synthesis enzymes and undergo expansion, eventually leading to the giant LDs characteristic of seipin deficiency. Our studies identify a discrete step of LD formation, namely the conversion of nascent LDs to mature LDs, and define a molecular role for seipin in this process, most likely by acting at ER-LD contact sites to enable lipid transfer to nascent LDs.DOI:
http://dx.doi.org/10.7554/eLife.16582.001
SUMMARY
Numerous studies in humans link a nonsynonymous genetic polymorphism (I148M) in adiponutrin (ADPN) to various forms of fatty liver disease and liver cirrhosis. Despite its high clinical relevance, the molecular function of ADPN and the mechanism by which I148M variant affects hepatic metabolism are unclear. Here we show that ADPN promotes cellular lipid synthesis by converting lysophosphatidic acid (LPA) into phosphatidic acid. The ADPN-catalyzed LPA acyltransferase (LPAAT) reaction is specific for LPA and long-chain acyl-CoAs. Wild-type mice receiving a high-sucrose diet exhibit substantial upregulation of Adpn in the liver and a concomitant increase in LPAAT activity. In Adpn-deficient mice, this diet-induced increase in hepatic LPAAT activity is reduced. Notably, the I148M variant of human ADPN exhibits increased LPAAT activity leading to increased cellular lipid accumulation. This gain of function provides a plausible biochemical mechanism for the development of liver steatosis in subjects carrying the I148M variant.
SUMMARY
Triglyceride (TG) storage in adipose tissue provides the major reservoir for metabolic energy in mammals. During lipolysis, fatty acids (FAs) are hydrolyzed from adipocyte TG stores and transported to other tissues for fuel. For unclear reasons, a large portion of hydrolyzed FAs in adipocytes is re-esterified to TGs in a “futile”, ATP-consuming, energy dissipating cycle. Here we show that FA re-esterification during adipocyte lipolysis is mediated by DGAT1, an ER-localized DGAT enzyme. Surprisingly, this re-esterification cycle does not preserve TG mass, but instead functions to protect the ER from lipotoxic stress and related consequences, such as adipose tissue inflammation. Our data reveal an important role for DGAT activity and TG synthesis generally in averting ER stress and lipotoxicity, with specifically DGAT1 performing this function during stimulated lipolysis in adipocytes.
Graphical Abstract Highlights d Treatment of cells with palmitate increases saturated glycerolipids and ER stress d Di-saturated glycerolipids are key to lipotoxicity in this model d Inhibiting ER-localized GPAT enzymes protects cells from lipotoxicity d Depletion of the putative E3 ligase RNF213 protects cells from lipotoxicity In Brief Cellular lipotoxicity due to saturated fatty acids causes cell death and is thought to be a root cause of metabolic diseases. Piccolis, Bond, et al. use unbiased analyses to reveal hundreds of genes modulating cellular palmitate lipotoxicity and implicate saturated glycerolipids as a causative factor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.