An investigation was carried out to evaluate the effect of graphene quantum dots (GQD) and its nanocomposites on germination, growth, biochemical, histological, and major ROS detoxifying antioxidant enzyme activities involved in salinity stress tolerance of wheat. Seedlings were grown on nutrient-free sand and treatment solutions were applied through solid matrix priming and by foliar spray. Control seedlings under salinity stress exhibited a reduction in photosynthetic pigment, sugar content, growth, increased electrolyte leakage, and lipid peroxidation, whereas iron-manganese nanocomposites doped GQD (FM_GQD) treated seedlings were well adapted and performed better compared to control. Enzymatic antioxidants like catalase, peroxidase, glutathione reductase and NADPH oxidase were noted to increase by 40.5, 103.2, 130.19, and 141.23% respectively by application of FM_GQD. Histological evidence confirmed a lower extent of lipid peroxidation and safeguarding the plasma membrane integrity through osmolyte accumulation and redox homeostasis. All of these interactive phenomena lead to an increment in wheat seedling growth by 28.06% through FM_GQD application. These findings highlight that micronutrient like iron, manganese doped GQD can be a promising nano-fertilizer for plant growth and this article will serve as a reference as it is the very first report regarding the ameliorative role of GQD in salt stress mitigation.
Objective: To evaluate the effect of ultraviolet (UV) radiation on the therapeutical and oxidative stress status of fenugreek seedlings during the post-germination phase. Methods:The seeds of Trigonella foenum-graecum L. were subjected to UV radiation of different wavelengths UV 254 nm, UV 365 nm and the combination of 254 nm and 365 nm UV during the course of germination up to 96 h. Free radicals scavenging activity, in vitro antidiabetic activity as well as total phenol (TPC) and flavonoid (TFC) contents were evaluated up to four days of germination stages. Analysis of total activities of superoxide dismutase (SOD), peroxidase, catalase and NADPH oxidase (NOX) was conducted using non-denaturing polyacrylamide gel electrophoresis along with histochemical detection of H2O2 and superoxide radical localisation, lipid peroxidation and plasma membrane integrity was also performed. Results:Overall it was observed that the sprouts exposed to UV 365 nm exhibited a significant enhancement in free radical scavenging as well as antidiabetic activity at the 48h stage of germination. Interestingly highest phenol and flavonol content were also stimulated at the same stage by UV 365 nm. The effect of UV irradiation was evident on the localisation of H2O2 and superoxide radical. The on gel assay revealed that the total activities of the antioxidant enzymes were extensively elevated by UV irradiation. Conclusion:The results suggest that the UV irradiation technology can be implemented for the enhancement of nutraceutical properties of sprouts also UV exposure helps in the induction of the antioxidant enzyme system which may be beneficial for oxidative stress management in plants during germination phases.
Agro-researchers are endlessly trying to derive a potential biomolecule having antifungal properties in order to replace the application of synthetic fungicides on agricultural fields. Rot disease often caused by Fusarium solani made severe loss of wheat crops every year. Chitosan and its metallic nano-derivatives hold a broad-spectrum antifungal property. Our interdisciplinary study deals with the application of nickel chitosan nanoconjugate (NiCNC) against Fusarium rot of wheat, in comparison with chitosan nanoparticles (CNPs) and commercial fungicide Mancozeb. CNPs and NiCNC were characterized on the basis of UV–Vis spectrophotometry, HR-TEM, FESEM, EDXS and FT-IR. Both CNPs and NiCNC were found effective against the fungal growth, of which NiCNC at 0.04 mg/mL showed complete termination of F. solani grown in suitable medium. Ultrastructural analysis of F. solani conidia treated with NiCNC revealed pronounced damages and disruption of the membrane surface. Fluorescence microscopic study revealed generation of oxidative stress in the fungal system upon NiCNC exposure. Moreover, NiCNC showed reduction in rot disease incidence by 83.33% of wheat seedlings which was further confirmed through the observation of anatomical sections of the stem. NiCNC application helps the seedling to overcome the adverse effect of pathogen, which was evaluated through stress indices attributes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.