The main focus of prion structural biology studies is to understand the molecular basis of prion diseases caused by misfolding, and aggregation of the cellular prion protein PrP C remains elusive. Several genetic mutations are linked with human prion diseases and driven by the conformational conversion of PrP C to the toxic PrP Sc . The main goal of this study is to gain a better insight into the molecular effect of disease-associated V210I mutation on this process by molecular dynamics simulations. This inherited mutation elicited copious structural changes in the β1-α1-β2 subdomain, including an unfolding of a helix α1 and the elongation of the β-sheet. These unusual structural changes likely appeared to detach the β1-α1-β2 subdomain from the α2-α3 core, an early misfolding event necessary for the conformational conversion of PrP C to PrP Sc . Ultimately, the unfolded α1 and its prior β1-α1 loop further engaged with unrestrained conformational dynamics and were widely considered as amyloidogenic-inducing traits. Furthermore, the resulting folding intermediate possesses a highly unstable β1-α1-β2 subdomain, thereby enhancing the aggregation of misfolded PrP C through intermolecular interactions between frequently refolding regions. Briefly, these remarkable changes as seen in the mutant β1-α1-β2 subdomain are consistent with previous experimental results and thus provide a molecular basis of PrP C misfolding associated with the conformational conversion of PrP C to PrP Sc .
Missense mutation L270P disrupts the auto-inhibited state of "Wiskkot-Aldrich syndrome protein" (WASP), thereby constitutively activating the mutant structure, a key event for pathogenesis of X-linked neutropenia (XLN). In this study, we comprehensively deciphered the molecular feature of activated mutant structure by all atom molecular dynamics (MD) approach. MD analysis revealed that mutant structure exposed a wide variation in the spatial environment of atoms, resulting in enhanced residue flexibility. The increased flexibility of residues favored to decrease the number of intra-molecular hydrogen bonding interactions in mutant structure. The reduction of hydrogen bonds in the mutant structure resulted to disrupt the local folding of secondary structural elements that eventually affect the proper folding of mutants. The unfolded state of mutant structure established more number of inter-molecular hydrogen bonding interaction at interface level due to the conformational variability, thus mediated high binding affinity with its interacting partner, Cdc42.
Thermus thermophilus is an extremely thermophilic organism that thrives at a temperature of 65°C. T. thermophilus genome has ~2218 genes, out of which 66% (1482 genes) have been annotated, and the remaining 34% (736 genes) are assigned as hypothetical proteins. In this work, biochemical and biophysical experiments were performed to characterize the hypothetical protein TTHA1873 from T. thermophilus. The hypothetical protein TTHA1873 acts as a nuclease, which indiscreetly cuts methylated and non‐methylated DNA in divalent metal ions and relaxes the plasmid DNA in the presence of ATP. The chelation of metal ions with EDTA inhibits its activity. These results suggest that the hypothetical protein TTHA1873 would be a CRISPR‐associated protein with non‐specific DNase activity and ATP‐dependent DNA‐relaxing activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.