COVID-19-associated deaths have been reported in the United States.* Reports of U.S. patients hospitalized with SARS-CoV-2 infection (the virus that causes COVID-19) describe high proportions of older, male, and black persons (2-4). Similarly, when comparing hospitalized patients with catchment area populations or nonhospitalized COVID-19 patients, high proportions have underlying conditions, including diabetes mellitus, hypertension, obesity, cardiovascular disease, chronic kidney disease, or chronic respiratory disease (3,4). For this report, data were abstracted from the medical records of 220 hospitalized and 311 nonhospitalized patients aged ≥18 years with laboratory-confirmed COVID-19 from six acute care hospitals and associated outpatient clinics in metropolitan Atlanta, Georgia. Multivariable analyses were performed to identify patient characteristics associated with hospitalization. The following characteristics were independently associated with hospitalization: age ≥65 years (adjusted odds ratio [aOR] = 3.4), black race (aOR = 3.2), having diabetes mellitus (aOR = 3.1), lack of insurance (aOR = 2.8), male sex (aOR = 2.4), smoking (aOR = 2.3), and obesity (aOR = 1.9). Infection with SARS-CoV-2 can lead to severe outcomes, including death, and measures to protect persons from infection, such as staying at home, social distancing (5), and awareness and management of underlying conditions should be emphasized for those at highest risk for hospitalization with COVID-19. Measures that prevent the spread of infection to others, such as wearing cloth face coverings (6), should be used whenever possible to protect groups at high risk. Potential barriers to the ability to adhere to these measures need to be addressed. Patients were selected from six acute care hospitals and associated outpatient clinics affiliated with a single academic health care system in metropolitan Atlanta. Hospitalized patients were selected sequentially from hospital-provided lists of * https://www.cdc.gov/coronavirus/2019-ncov/cases-in-us.html.
Using HRM, we identified and verified biological perturbations associated with primary traffic pollutant in panel-based setting with repeated measurement. Observed response was consistent with endogenous metabolic signaling related to oxidative stress, inflammation, and nucleic acid damage and repair. Collectively, the current findings provide support for the use of untargeted HRM in the development of metabolic biomarkers of traffic pollution exposure and response.
On January 14, 2022, this report was posted as an MMWR Early Release on the MMWR website (https://www.cdc.gov/mmwr).The COVID-19 pandemic has magnified longstanding health care and social inequities, resulting in disproportionately high COVID-19-associated illness and death among members of racial and ethnic minority groups (1). Equitable use of effective medications (2) could reduce disparities in these severe outcomes (3). Monoclonal antibody (mAb) therapies against SARS-CoV-2, the virus that causes COVID-19, initially received Emergency Use Authorization (EUA) from the Food and Drug Administration (FDA) in November 2020. mAbs are typically administered in an outpatient setting via intravenous infusion or subcutaneous injection and can prevent progression of COVID-19 if given after a positive SARS-CoV-2 test result or for postexposure prophylaxis in patients at high risk for severe illness. † Dexamethasone, a commonly used steroid, and remdesivir, an antiviral drug that received EUA from FDA in May 2020, are used in inpatient settings and help prevent COVID-19 progression § (2). No large-scale studies have yet examined the use of mAb by race and ethnicity. Using COVID-19 patient electronic health record data from 41 U.S. health care systems that participated in the PCORnet, the National Patient-Centered Clinical Research Network, ¶ this study assessed receipt of medications for COVID-19 treatment by race (White, Black, Asian, and Other races [including American Indian or Alaska Native, Native Hawaiian or Other * These authors contributed equally to this report. † Fact sheets for healthcare providers for FDA emergency use authorization are available from https://www.fda.gov/media/145611/download for REGEN-COV (casirivimab and imdevimab) and https://www.fda.gov/ media/145802/download for bamlanivimab and etesevimab. The SARS-CoV-2 B.1.1.529 (Omicron) variant is not neutralized by bamlanivimab and etesevimab or casirivimab and imdevimab, the mAb-based COVID-19 treatments that were most frequently prescribed before the emergence of Omicron. § https://www.covid19treatmentguidelines.nih.gov/management/ clinical-management/ ¶ PCORnet is a national network-of-networks developed to conduct patientcentered outcomes research. The PCORnet infrastructure supports large-scale studies using its distributed data network.
Background. Mechanisms underlying the effects of traffic-related air pollution on people with asthma remain largely unknown, despite the abundance of observational and controlled studies reporting associations between traffic sources and asthma exacerbation and hospitalizations. Objectives. To identify molecular pathways perturbed following traffic pollution exposures, we analyzed data as part of the Atlanta Commuters Exposure (ACE–2) study, a crossover panel of commuters with and without asthma. Methods. We measured 27 air pollutants and conducted high-resolution metabolomics profiling on blood samples from 45 commuters before and after each exposure session. We evaluated metabolite and metabolic pathway perturbations using an untargeted metabolome-wide association study framework with pathway analyses and chemical annotation. Results. Most of the measured pollutants were elevated in highway commutes (p < 0.05). From both negative and positive ionization modes, 17,586 and 9,087 metabolic features were extracted from plasma, respectively. 494 and 220 unique features were associated with at least 3 of the 27 exposures, respectively (p<0.05), after controlling confounders and false discovery rates. Pathway analysis indicated alteration of several inflammatory and oxidative stress related metabolic pathways, including leukotriene, vitamin E, cytochrome P450, and tryptophan metabolism. We identified and annotated 45 unique metabolites enriched in these pathways, including arginine, histidine, and methionine. Most of these metabolites were not only associated with multiple pollutants, but also differentially expressed between participants with and without asthma. The analysis indicated that these metabolites collectively participated in an interrelated molecular network centering on arginine metabolism, underlying the impact of traffic-related pollutants on individuals with asthma. Conclusions. We detected numerous significant metabolic perturbations associated with in-vehicle exposures during commuting and validated metabolites that were closely linked to several inflammatory and redox pathways, elucidating the potential molecular mechanisms of traffic-related air pollution toxicity. These results support future studies of metabolic markers of traffic exposures and the corresponding molecular mechanisms.
We sought datasets with granular age distributions of rotavirus-positive disease presentations among children <5 years of age, before the introduction of rotavirus vaccines. We identified 117 datasets and fit parametric age distributions to each country dataset and mortality stratum. We calculated the median age and the cumulative proportion of rotavirus gastroenteritis events expected to occur at ages between birth and 5.0 years. The median age of rotavirus-positive hospital admissions was 38 weeks (interquartile range [IQR], 25–58 weeks) in countries with very high child mortality and 65 weeks (IQR, 40–107 weeks) in countries with very low or low child mortality. In countries with very high child mortality, 69% of rotavirus-positive admissions in children <5 years of age were in the first year of life, with 3% by 10 weeks, 8% by 15 weeks, and 27% by 26 weeks. This information is critical for assessing the potential benefits of alternative rotavirus vaccination schedules in different countries and for monitoring program impact.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.