The chiral sulfide, isothiocineole, has been synthesized in one step from elemental sulfur, γ-terpinene, and limonene in 61% yield. A mechanism involving radical intermediates for this reaction is proposed based on experimental evidence. The application of isothiocineole to the asymmetric epoxidation of aldehydes and the aziridination of imines is described. Excellent enantioselectivities and diastereoselectivities have been obtained over a wide range of aromatic, aliphatic, and α,β-unsaturated aldehydes using simple protocols. In aziridinations, excellent enantioselectivities and good diastereoselectivities were obtained for a wide range of imines. Mechanistic models have been put forward to rationalize the high selectivities observed, which should enable the sulfide to be used with confidence in synthesis. In epoxidations, the degree of reversibility in betaine formation dominates both the diastereoselectivity and the enantioselectivity. Appropriate tuning of reaction conditions based on understanding the reaction mechanism enables high selectivities to be obtained in most cases. In aziridinations, betaine formation is nonreversible with semistabilized ylides and diastereoselectivities are determined in the betaine forming step and are more variable as a result.
In this paper, we describe studies on the cyclopropanation of Michael acceptors with chiral sulfur ylides. It had previously been found that semi-stabilized sulfonium ylides (e.g., Ph-stabilized) reacted with cyclic and acyclic enones and substituted acrylates with high ee and that stabilized sulfonium ylides (e.g., ester-stabilized) reacted with cyclic enones again with high ee. The current study has focused on the reactions of stabilized sulfonium ylides with acyclic enones which unexpectedly gave low ee. Furthermore, a clear correlation of ee with ylide stability was observed in reactions with methyl vinyl ketone (MVK): ketone-stabilized ylide gave 25% ee, ester-stabilized ylide gave 46% ee, and amide-stabilized ylide gave 89% ee. It is believed that following betaine formation an unusual proton transfer step intervenes which compromises the enantioselectivity of the process. Thus, following addition of a stabilized ylide to the Michael acceptor, rapid and reversible intramolecular proton transfer within the betaine intermediate, prior to ring closure, results in an erosion of ee. Proton transfer occurred to the greatest extent with the most stabilized ylide (ketone). When the same reactions were carried out with deuterium-labeled sulfonium ylides, higher ee's were observed in all cases since proton/deuteron transfer was slowed down. The competing proton transfer or direct ring-closure pathways that are open to the betaine intermediate apply not only to all sulfur ylides but potentially to all ylides. By applying this model to S-, N-, and P-ylides we have been able to rationalize the outcome of different ylide reactions bearing a variety of substituents in terms of chemo- and enantioselectivity.
Hydrodesulfurization of Athabasca (Syncrude) fluid coke was studied for particle sizes of −74 + 53, −53 + 44 and −44 μm using a quartz reactor. Five flow rates of hydrogen from 1.2 × 10−6 to 2.5 × 10−6 m3/s were investigated with from 0.45 to 1.0 g of coke. Gas production — time profiles for H2S and CH4 were obtained at temperatures from 973 to 1073 K for each particle size range. Desulfurization rates were functions of particle size and temperature. Results agree with predictions of the shrinking core model, the rate being controlled initially by the gas film and chemical reaction resistances followed by control due to diffusion of hydrogen through the increasing ash layer. Below 998 K, the apparent activation energy was determined to be 293 kJ/mol · K, while at temperatures between 998 and 1073 K it was 29 kJ/mol · K.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.