Owing to their "dual" affinity, amphiphiles self-assemble in water to form different kinds of nanoscale multimolecular assemblies ranging from simple micelles and vesicles to highly organized fibers, helices and tubes. In this tutorial review the aggregates formed in water by head/tail amphiphiles are revisited and discussed from the point of view of supramolecular chemistry with a focus on their structure and recognition abilities. Their applications in materials chemistry, as soft templates for inorganic nanostructures, as well as in biological and medicinal chemistry are also illustrated. Special attention is paid to highlight intriguing aspects, for example the control of morphology and chirality, their modulation by experimental parameters and chiral symmetry breaking.
Heating one of the most abundant naturally occurring inorganic chemicals (elemental sulfur) with one of the most readily available homochiral molecules (limonene) gives a one-step synthesis of a chiral sulfide which exhibits outstanding selectivities in sulfur ylide mediated asymmetric epoxidations and aziridinations. In particular reactions of benzyl and allylic sulfonium salts with both aromatic and aliphatic aldehydes gave epoxides with perfect enantioselectivities and the highest diastereoselectivities reported to date. In addition reactions with imines gave aziridines again with the highest enantioselectivities and diastereoselectivities reported to date. The reactions are scaleable, and the sulfide can be reisolated in high yield. The epoxidation has been used as the key step in a convergent and stereoselective synthesis of each of the diastereoisomers of the cinchona alkaloids, quinine and quinidine.
Neuropeptide Y (NPY) and pancreatic polypeptide (PP) control central and peripheral processes by activating the G protein coupled receptors YxR (x = 1, 2, 4, 5). We present analogs of the C-terminal fragments 25-36 and 32-36 of NPY and PP containing (1R,2S)-cyclobutane (βCbu) or (1R,2S)-cyclopentane (βCpe) β-amino acids, which display exclusively Y4R affinity. In particular, [βCpe(34)]-NPY-(25-36) is a Y4R selective partial agonist (EC50 41 ± 6 nM, Emax 71%) that binds Y4R with a Ki of 10 ± 2 nM and a selectivity >100-fold relative to Y1R and Y2R and >50-fold relative to Y5R. Comparably, [Y(32), βCpe(34)]-NPY(PP)-(32-36) selectively binds and activates Y4R (EC50 94 ± 21 nM, Emax 73%). The NMR structure of [βCpe(34)]-NPY-(25-36) in dodecylphosphatidylcholine micelles shows a short helix at residues 27-32, while the C-terminal segment R(33)βCpe(34)R(35)Y(36) is extended. The biological properties of the βCbu- or βCpe-containing NPY and PP C-terminal fragments encourage the future application of these β-amino acids in the synthesis of selective Y4R ligands.
The chiral sulfide, isothiocineole, has been synthesized in one step from elemental sulfur, γ-terpinene, and limonene in 61% yield. A mechanism involving radical intermediates for this reaction is proposed based on experimental evidence. The application of isothiocineole to the asymmetric epoxidation of aldehydes and the aziridination of imines is described. Excellent enantioselectivities and diastereoselectivities have been obtained over a wide range of aromatic, aliphatic, and α,β-unsaturated aldehydes using simple protocols. In aziridinations, excellent enantioselectivities and good diastereoselectivities were obtained for a wide range of imines. Mechanistic models have been put forward to rationalize the high selectivities observed, which should enable the sulfide to be used with confidence in synthesis. In epoxidations, the degree of reversibility in betaine formation dominates both the diastereoselectivity and the enantioselectivity. Appropriate tuning of reaction conditions based on understanding the reaction mechanism enables high selectivities to be obtained in most cases. In aziridinations, betaine formation is nonreversible with semistabilized ylides and diastereoselectivities are determined in the betaine forming step and are more variable as a result.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.