Heating one of the most abundant naturally occurring inorganic chemicals (elemental sulfur) with one of the most readily available homochiral molecules (limonene) gives a one-step synthesis of a chiral sulfide which exhibits outstanding selectivities in sulfur ylide mediated asymmetric epoxidations and aziridinations. In particular reactions of benzyl and allylic sulfonium salts with both aromatic and aliphatic aldehydes gave epoxides with perfect enantioselectivities and the highest diastereoselectivities reported to date. In addition reactions with imines gave aziridines again with the highest enantioselectivities and diastereoselectivities reported to date. The reactions are scaleable, and the sulfide can be reisolated in high yield. The epoxidation has been used as the key step in a convergent and stereoselective synthesis of each of the diastereoisomers of the cinchona alkaloids, quinine and quinidine.
The title compound, C13H10ClNO, (I), is a polymorph of the structure, (II), first reported by Gowda et al. [Acta Cryst. (2008), E64, o462]. In the original report, the compound crystallized in the orthorhombic space group Pbca (Z = 8), whereas the structure reported here is monoclinic P21/c (Z = 4). The principal difference between the two forms lies in the relative orientations of the phenyl and benzene rings [dihedral angle = 8.90 (13)° for (I) and 61.0 (1)° for (II)]. The inclination of the amide –CONH– units to the benzoyl ring is more similar [15.8 (7)° for (I) and 18.2 (2)° for (II)]. In both forms, the N—H bonds are anti to the 3-chloro substituents of the aniline rings. In the crystal, intermolecular N—H⋯O hydrogen bonds form C(4) chains along c. These chains are bolstered by weak C—H⋯O interactions that generate R
2
1(6) and R
2
1(7) ring motifs.
We report here a comparative theoretical and experimental study of four triazine-based hydrazone derivatives. The hydrazones are synthesized by a three step process from commercially available benzil and thiosemicarbazide. The structures of all compounds were determined by using the UV-Vis., FT-IR, NMR (1H and 13C) spectroscopic techniques and finally confirmed unequivocally by single crystal X-ray diffraction analysis. Experimental geometric parameters and spectroscopic properties of the triazine based hydrazones are compared with those obtained from density functional theory (DFT) studies. The model developed here comprises of geometry optimization at B3LYP/6-31G (d, p) level of DFT. Optimized geometric parameters of all four compounds showed excellent correlations with the results obtained from X-ray diffraction studies. The vibrational spectra show nice correlations with the experimental IR spectra. Moreover, the simulated absorption spectra also agree well with experimental results (within 10–20 nm). The molecular electrostatic potential (MEP) mapped over the entire stabilized geometries of the compounds indicated their chemical reactivates. Furthermore, frontier molecular orbital (electronic properties) and first hyperpolarizability (nonlinear optical response) were also computed at the B3LYP/6-31G (d, p) level of theory.
A novel
approach to prediction of supramolecular motifs was applied
to more than 6000 monomolecular structures containing 2-periodic H-bond
patterns. It is shown that a number of topological descriptors allow
one to rationalize supramolecular motifs, find the regularities in
their structure, and store the information in a knowledge database.
The knowledge database can then be used in an expert system to mimic
the work of a human expert and to forecast the method of assembling
molecules into supramolecular ensembles and into extended (periodic)
architectures. The crystals of N-[(4-methylbenzene)sulfonyl]serine
were synthesized, and the principles of the expert system were used
to successfully predict the 2-periodic square-lattice H-bond pattern
in this compound.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.