The 747-bp cfiA gene, which encodes a metallo--lactamase, and the regions flanking cfiA in six imipenemresistant and four imipenem-susceptible Bacteroides fragilis strains isolated in Japan were analyzed by PCR and DNA sequencing. The nucleotide sequences of the cfiA genes (designated cfiA 1 to cfiA 10 ) of all 10 strains tested varied from that of the standard cfiA gene from B. fragilis TAL2480. However, putative proteins encoded by the cfiA variants contained conserved amino acid residues important for zinc binding and hairpin loop formation, suggesting that cfiA variants have the capability of producing metallo--lactamases with full catalytic activities. PCR assay indicated that six metallo--lactamase-producing, imipenem-resistant strains had an insertion mutation in the region immediately upstream of cfiA. Nucleotide sequencing of the PCRamplified fragments along with the upstream region of cfiA revealed that there were five new kinds of insertion sequence (IS) elements (designated IS612, IS613, IS614, IS615, and IS616, with a size range of 1,594 to 1,691 bp), of which only IS616 was found to be almost identical to IS1188, one of the IS elements previously identified in the upstream region of cfiA. These elements had target site duplications of 4 or 5 bp in length, terminal inverted repeats (14, 15, or 17 bp in size), and a large open reading frame encoding a putative transposase which is required for the transcription of IS elements. Each element was inserted such that the transcriptional direction of the transposase was opposite to that of cfiA. A computer-aided homology search revealed that, based on the homology of their putative transposases, the sizes of their terminal inverted repeat sequences, and their target site duplications, IS612, IS613, IS614, and IS615 belong to the IS4 family, which includes IS942, previously found in some drug-resistant B. fragilis strains, but that IS616 belongs to the IS1380 family. All the IS elements appear to have putative promoter motif sequences (the ؊7 region's TAnnTTTG motif and the ؊33 region's TTG or TG) in their end regions, suggesting that the IS elements provide a promoter for the transcription of cfiA upon insertion. These data provide additional proof that various IS elements may exist to provide a promoter to express the cfiA gene.Bacteroides fragilis is a strict anaerobe that inhabits the intestines of humans and is the most common anaerobe recovered from various infections, such as intra-abdominal infection, foot ulcer, and sepsis. This organism shows inherently poor susceptibility to most -lactam antibiotics (10, 13, 30). Carbapenems such as imipenem (15), panipenem (18), meropenem (6), biapenem (36), CS-834 (12), and ertapenem (13, 11) are powerful antimicrobial agents with broad spectra that cover most aerobes and anaerobes, including B. fragilis.The existence of imipenem-resistant B. fragilis strains was reported nearly 2 decades ago (5), and these strains were found to produce metallo--lactamase, which hydrolyzes the fourmembered-ring CON bond of...
A new insertion sequence (IS) element, IS679 (2,704 bp in length), has been identified in plasmid pB171 of enteropathogenic Escherichia coli B171. IS679 has imperfect 25-bp terminal inverted repeats (IRs) and three open reading frames (ORFs) (here called tnpA, tnpB, and tnpC). A plasmid carrying a composite transposon (Tn679) with the kanamycin resistance gene flanked by an intact IS679 sequence and an IS679 fragment with only IRR (IR on the right) was constructed to clarify the transposition activity of IS679. A transposition assay done with a mating system showed that Tn679 could transpose at a high frequency to the F plasmid derivative used as the target. On transposition, Tn679 duplicated an 8-bp sequence at the target site. Tn679 derivatives with a deletion in each ORF of IS679 did not transpose, finding indicative that all three IS679 ORFs are essential for transposition. The tnpA and tnpC products appear to have the amino acid sequence motif characteristic of most transposases. A homology search of the databases found that a total of 25 elements homologous to IS679 are present in Agrobacterium, Escherichia, Rhizobium, Pseudomonas, and Vibrio spp., providing evidence that the elements are widespread in gram-negative bacteria. We found that these elements belong to the IS66 family, as do other elements, including nine not previously reported. Almost all of the elements have IRs similar to those in IS679 and, like IS679, most appear to have duplicated an 8-bp sequence at the target site on transposition. These elements have three ORFs corresponding to those in IS679, but many have a mutation(s) in an ORF(s). In almost all of the elements, tnpB is located in the ؊1 frame relative to tnpA, such that the initiation codon of tnpB overlaps the TGA termination codon of tnpA. In contrast, tnpC, separated from tnpB by a space of ca. 20 bp, is located in any one of three frames relative to tnpB. No common structural features were found around the intergenic regions, indicating that the three ORFs are expressed by translational coupling but not by translational frameshifting.Insertion sequences (ISs) comprise a large group of bacterial transposable DNA elements. These elements vary in size from 0.7 to 3.5 kb and have imperfect terminal inverted repeat sequences (IRs) of 10 to 40 bp in length (for recent reviews, see references 16 and 20). IS elements generally encode transposase, which is required for transposition, and duplicate a sequence of several base pairs at the target site on transposition. Based on the homology of their transposase genes, IS elements are classified into a number of families (see references 16 and 20). Most IS elements have an open reading frame (ORF) which is thought to encode transposase. Some elements, such as IS1 and IS3, have two ORFs, from which the transposase is produced by translational frameshifting (9,28,29,30). Unless frameshifting occurs, a protein(s) is produced that acts as a transposition inhibitor (31).IS679, which is present in two copies in plasmid pB171 of enteropathogenic ...
Tnr1 (235 bp long) is a transposable element in rice. Polymerase chain reactions (PCRs) done with a primer(s) that hybridizes to terminal inverted repeat sequences (TIRs) of Tnr1 detected new Tnr1 members with one or two insertions in rice genomes. Six identified insertion sequences (Tnr4, Tnr5, Tnr11, Tnr12, Tnr13 and RIRE9) did not have extensive homology to known transposable elements, rather they had structural features characteristic of transposable elements. Tnr4 (1767 bp long) had imperfect 64-bp TIRs and appeared to generate duplication of a 9-bp sequence at the target site. However, the TIR sequences were not homologous to those of known transposable elements, indicative that Tnr4 is a new transposable element. Tnr5 (209 bp long) had imperfect 46-bp TIRs and appeared to generate duplication of sequence TTA like that of some elements of the Tourist family. Tnr11 (811 bp long) had 73-bp TIRs with significant homology to those of Tnr1 and Stowaway and appeared to generate duplication of sequence TA, indicative that Tnr11 is a transposable element of the Tnr1/Stowaway family. Tnr12 (2426 bp long) carried perfect 9-bp TIRs, which began with 5'-CACTA--3' from both ends and appeared to generate duplication of a 3-bp target sequence, indicative that Tnr12 is a transposable element of the En/Spm family. Tnr13 (347 bp long) had 31-bp TIRs and appeared to generate duplication of an 8-bp target sequence. Two sequences, one the transposon-like element Crackle, had partial homology in the Tnr13 ends. All five insertions appear to be defective elements derived from autonomous ones encoding the transposase gene. All had characteristic tandem repeat sequences which may be recognized by transposase. The sixth insertion sequence, named RIRE9 (3852 bp long), which begins with 5'-TG--3' and ends with 5'--CA-3', appeared to generate duplication of a 5-bp target sequence. These and other structural features indicate that this insertion is a solo LTR (long terminal repeat) of a retrotransposon. The transposable elements described above could be identified as insertions into Tnr1, which do not deleteriously affect the growth of rice cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.