The aim of this study was to examine the effects of human umbilical cord blood-derived CD34-positive endothelial progenitor cells (CD34+ EPCs) on osteoblastic differentiation of cultured human periosteal-derived osteoblasts (POs). CD34+ cells from human umbilical cord blood were sorted to purify more EPCs in characterization. These sorted cells showed CD31, VE-cadherin, and KDR expression as well as CD34 expression and formed typical tubes in Matrigel. These sorted cells were referred to as human cord blood-derived CD34+ EPCs. In in vivo bone formation using a miniature pig model, the newly formed bone was clearly examined in defects filled with polydioxanone/pluronic F127 (PDO/Pluronic F127) scaffolds containing either human umbilical cord blood-derived CD34+ EPCs and POs or human umbilical vein endothelial cells (HUVEC) and POs; however, the new bone had the greatest density in the defect treated with CD34+ EPCs and POs. Osteoblastic phenotypes of cultured human POs using ALP activity and von Kossa staining were also more clearly found in CD34+ EPC-conditioned medium than CD34-negative (CD34-) cell-conditioned medium, whereas HUVEC-conditioned medium had an intermediate effect. PCR array for common cytokines and growth factors showed that the secretion of interleukin (IL)-1β was significantly higher in CD34+ EPCs than in HUVEC, followed by level in CD34- cells. In addition, IL-1β also potently and dose dependently increased ALP activity and mineralization of POs in culture. These results suggest that human umbilical cord blood-derived CD34+ EPCs stimulates osteoblastic differentiation of cultured human POs. The functional role of human umbilical cord blood-derived CD34+ EPCs in increasing the osteogenic phenotypes of cultured human POs may depend on IL-1β secreted from human umbilical cord blood-derived CD34+ EPCs.
This study suggests one of the sound strategies to make a breakthrough in the formulation of green pesticides. Hybridization with inorganic matrixes not only enables the natural antibiotic substances to replace the synthetic ingredients but also adjuvants to be excluded from the formulations. Furthermore, the resulting hybrid exhibits a controlled release of the intercalated substances. Although substantiated further, this study is expected to attract a great deal of attention to reliable application of natural antibiotic substances in green protection of crops and agricultural products.
Background: Extended-spectrum cephalosporins and fluoroquinolones are important antimicrobials for treating invasive salmonellosis, and emerging resistance to these antimicrobials is of paramount concern. Methods: A total of 30 Salmonella spp. clinical isolates recovered in Gyeongsangbuk-do from 2012 to 2013 were characterized using antibiotic resistance profiles and pulsed-field gel electrophoresis (PFGE). Results: A high prevalence of multidrug-resistant isolates, mainly showing an ampicillin, nalidixic acid, chloramphenicol resistance pattern, was observed. Four extended-spectrum β-lactamase (ESBL)-producing isolates (3 CTX-M-15 isolates and 1 CTX-M-27 isolate) were found. The blaCTX-M-27 gene was carried by an IncF conjugative plasmid in the S. Infantis isolate. The blaCTX-M-15 gene were carried by an IncF (2 isolates) or IncHI2 (1 isolate) conjugative plasmid in S.Enteritidis. In addition, a single mutation of GyrA, Ser83Thr (1 isolates), Asp87Tyr (9 isolates), Asp87Gly (4 isolates), and Asp87Leu (3 isolates), was detected in nalidixic acid-resistant Salmonella spp. isolates. XbaI PFGE analysis of all isolates revealed more than 19 different pulsotypes. The most common S. Enteritidis PFGE pattern (SEGX01.003) was associated with a larger number of cases of invasive salmonellosis than all other patterns.
Conclusion:The information from our study can assist in source attribution, outbreak investigations, and tailoring of interventions to maximize disease prevention.
Livestock odors are unavoidable problems in modern industrial society. We foresaw a role for fermented organic wastes in controlling odorous gases. In this study, we applied fermented coffee grounds to the floor area of a dairy cow barn and assessed alterations in odor compounds and a microbial shift over a period of three weeks. The treatment dramatically reduced ten odor compounds (more than 50%), highlighting the utility of fermented coffee grounds as an excellent product to reduce odors derived from cow manure. By the end of the treatment, the microbial consortium showed increases in rare families whose prevalence and abundance before the treatment had been low. Network analysis manifested 23 bacterial families dominant in fermented coffee grounds, negatively connected with odorous compounds, indicating potential odor-reducing bacterial families. This study provides an insight into using bacteria at the community level as a treatment to solve an environmental issue; simultaneously, it suggests proper usage of organic wastes by recycling them as fermenters for beneficial bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.