In biomechanics, joint kinetics has an important role in evaluating the mechanical load of the joint and understanding its motor function. Although an optical motion capture (OMC) system has mainly been used to evaluate joint kinetics in combination with force plates, inertial motion capture (IMC) systems have recently been emerging in joint kinetic analysis due to their wearability and ubiquitous measurement capability. In this regard, numerous studies have been conducted to estimate joint kinetics using IMC-based wearable systems. However, these have not been comprehensively addressed yet. Thus, the aim of this review is to explore the methodology of the current studies on estimating joint kinetic variables by means of an IMC system. From a systematic search of the literature, 48 studies were selected. This paper summarizes the content of the selected literature in terms of the (i) study characteristics, (ii) methodologies, and (iii) study results. The estimation methods of the selected studies are categorized into two types: the inverse dynamics-based method and the machine learning-based method. While these two methods presented different characteristics in estimating the kinetic variables, it was demonstrated in the literature that both methods could be applied with good performance for the kinetic analysis of joints in different daily activities.
In biomechanics, estimating the relative position between two body segments using inertial and magnetic measurement units (IMMUs) is important in that it enables the capture of human motion in unconstrained environments. The relative position can be estimated using the segment orientation and segment-to-joint center (S2J) vectors where the S2J vectors are predetermined as constants under the assumption of rigid body segments. However, human body segments are not rigid bodies because they are easily affected by soft tissue artifacts (STAs). Therefore, the use of the constant S2J vectors is one of the most critical factors for the inaccurate estimation of relative position. To deal with this issue, this paper proposes a method of determining time-varying S2J vectors to reflect the deformation of the S2J vectors and thus to increase the estimation accuracy, in IMMU-based relative position estimation. For the proposed method, first, reference S2J vectors for learning needed to be collected. A regression method derived a function outputting S2J vectors based on specific physical quantities that were highly correlated with the deformation of S2J vectors. Subsequently, time-varying S2J vectors were determined from the derived function. The validation results showed that, in terms of the averaged root mean squared errors of four tests performed by three subjects, the proposed method (15.08 mm) provided a higher estimation accuracy than the conventional method using constant vectors (31.32 mm). This indicates the proposed method may effectively compensate for the effects of STAs and ultimately estimate more accurate relative positions. By providing STA-compensated relative positions between segments, the proposed method applied in a wearable motion tracking system can be useful in rehabilitation or sports sciences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.