Abstract. In this work, we focus on the problem of tracking objects under significant viewpoint variations, which poses a big challenge to traditional object tracking methods. We propose a novel method to track an object and estimate its continuous pose and part locations under severe viewpoint change. In order to handle the change in topological appearance introduced by viewpoint transformations, we represent objects with 3D aspect parts and model the relationship between viewpoint and 3D aspect parts in a part-based particle filtering framework. Moreover, we show that instance-level online-learned part appearance can be incorporated into our model, which makes it more robust in difficult scenarios with occlusions. Experiments are conducted on a new dataset of challenging YouTube videos and a subset of the KITTI dataset [14] that include significant viewpoint variations, as well as a standard sequence for car tracking. We demonstrate that our method is able to track the 3D aspect parts and the viewpoint of objects accurately despite significant changes in viewpoint.
We propose a new technique for pushing an unknown object from an initial configuration to a goal configuration with stability constraints. The proposed method leverages recent progress in differentiable physics models to learn unknown mechanical properties of pushed objects, such as their distributions of mass and coefficients of friction. The proposed learning technique computes the gradient of the distance between predicted poses of objects and their actual observed poses, and utilizes that gradient to search for values of the mechanical properties that reduce the reality gap. The proposed approach is also utilized to optimize a policy to efficiently push an object toward the desired goal configuration. Experiments with real objects using a real robot to gather data show that the proposed approach can identify mechanical properties of heterogeneous objects from a small number of pushing actions.
Advances in sensor technologies, object detection algorithms, planning frameworks and hardware designs have motivated the deployment of robots in warehouse automation. A variety of such applications, like order fulfillment or packing tasks, require picking objects from unstructured piles and carefully arranging them in bins or containers. Desirable solutions need to be low-cost, easily deployable and controllable, making minimalistic hardware choices desirable. The challenge in designing an effective solution to this problem relates to appropriately integrating multiple components, so as to achieve a robust pipeline that minimizes failure conditions. The current work proposes a complete pipeline for solving such packing tasks, given access only to RGB-D data and a single robot arm with a vacuum-based end-effector, which is also used as a pushing finger. To achieve the desired level of robustness, three key manipulation primitives are identified, which take advantage of the environment and simple operations to successfully pack multiple cubic objects. The overall approach is demonstrated to be robust to execution and perception errors. The impact of each manipulation primitive is evaluated by considering different versions of the proposed pipeline, which incrementally introduce reasoning about object poses and corrective manipulation actions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.