Genetic susceptibility to late maturity alpha-amylase (LMA) in wheat (Triticum aestivum L.) results in increased alpha-amylase activity in mature grain when cool conditions occur during late grain maturation. Farmers are forced to sell wheat grain with elevated alpha-amylase at a discount because it has an increased risk of poor end-product quality. This problem can result from either LMA or preharvest sprouting, grain germination on the mother plant when rain occurs before harvest. Whereas preharvest sprouting is a well-understood problem, little is known about the risk LMA poses to North American wheat crops. To examine this, LMA susceptibility was characterized in a panel of 251 North American hard spring wheat lines, representing ten geographical areas. It appears that there is substantial LMA susceptibility in North American wheat since only 27% of the lines showed reproducible LMA resistance following cold-induction experiments. A preliminary genome-wide association study detected six significant marker-trait associations. LMA in North American wheat may result from genetic mechanisms similar to those previously observed in Australian and International Maize and Wheat Improvement Center (CIMMYT) germplasm since two of the detected QTLs, QLMA.wsu.7B and QLMA.wsu.6B, co-localized with previously reported loci. The Reduced height (Rht) loci also influenced LMA. Elevated alpha-amylase levels were significantly associated with the presence of both wild-type and tall height, rht-B1a and rht-D1a, loci in both cold-treated and untreated samples.
To realize on-line high-accuracy measurement in direct absorption spectroscopy (DAS), a system-on-chip, high-precision digital signal processor-based on-line Voigt lineshape fitting implementation is introduced in this paper. Given that the Voigt lineshape is determined by the Gauss full width at half maximum (FWHM) and Lorentz FWHM, a look-up table, which covers a range of combinations of both, is first built to achieve rapid and accurate calculation of Voigt lineshape. With the look-up table and raw absorbance data in hand, Gauss-Newton nonlinear fitting module is implemented to obtain the parameters including both the Gauss and Lorentz FWHMs, which can be used to calculate the integrated absorbance. To realize the proposed method in hardware, a digital signal processor (DSP) is adopted to fit the Voigt lineshape in a real-time DAS measurement system. In experiment, temperature and H2O concentration of a flat flame are recovered from the transitions of 7444.36 cm(-1) and 7185.6 cm(-1) by the DSP-based on-line Voigt lineshape fitting and on-line integral of the raw absorbance, respectively. The results show that the proposed method can not only fit the Voigt lineshape on-line but also improve the measurement accuracy compared with those obtained from the direct integral of the raw absorbance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.