The aim of this work was to develop and evaluate solid lipid nanoparticles (SLN) containing all-transretinoic acid (ATRA) for topical delivery. SLN composed of coconut oil and curdlan improved the suspension instability of ATRA in aqueous solution. The photodegradation of ATRA by light was reduced by incorporation in SLN. The loading efficiency of ATRA in SLN was higher than 95% (w/w). The amounts of ATRA released from SLN at 4 o C and at 37 o C were less than 15% and more than 60% (w/w) for 96 h, respectively. The ATRA-loaded SLN can be used as a potential carrier for topical delivery.
Alginate/carboxymethyl scleroglucan (CMSG) hydrogels were suggested as a novel carrier for the controlled release of protein drugs. The drug release characteristics of alginate hydrogels were improved by CMSG addition. Scleroglucan (Sclg) was carboxymethylated using monochloroacetic acid in aqueous alkaline medium. Alginate/CMSG hydrogels were prepared by dropping the mixture solution of alginate/CMSG into calcium chloride solution. The swelling behaviors and drug release characteristics of the hydrogels were investigated in the buffers of pH 1.2 or 7.4. As the CMSG content increased in the hydrogels, the swelling ratio of the alginate/CMSG hydrogel increased rapidly in the buffer of pH 7.4. At pH 1.2, however, the swelling ratio significantly decreased compared to that at pH 7.4. According to in vitro release tests, only 15% of ovalbumin, investigated as a model protein drug, was released from the alginate/CMSG hydrogels at pH 1.2 within 6 h. At pH 7.4, however, the drug release significantly increased due to the rapid swelling of the hydrogels. The release and swelling behaviors of the hydrogels could be controlled by changing the CMSG content in the hydrogels. These results supported the use of alginate/ CMSG hydrogels as a suitable carrier for the controlled release of protein drugs in a pH responsive manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.