Macroautophagy (autophagy hereafter) recycles intracellular components to sustain mitochondrial metabolism that promotes the growth, stress tolerance and malignancy of lung cancers, suggesting that autophagy inhibition may have antitumor activity. To assess the functional significance of autophagy in both normal and tumor tissue, we conditionally deleted the essential autophagy gene, autophagy-related-7, Atg7, throughout adult mice. Here we report that systemic ATG7 ablation caused susceptibility to infection and neurodegeneration that limited survival to 2–3 months. Moreover, upon fasting, autophagy-deficient mice suffered fatal hypoglycemia. Prior autophagy ablation did not alter the efficiency of non-small-cell lung cancer (NSCLC) initiation by activation of oncogenic KrasG12D and deletion of the Trp53 tumor suppressor. Acute autophagy ablation in mice with pre-existing NSCLC, however, blocked tumor growth, promoted tumor cell death, and generated more benign disease (oncocytomas). This anti-tumor activity occurred prior to destruction of normal tissues, suggesting that, acute autophagy inhibition may be therapeutically beneficial in cancer.
Macroautophagy (autophagy hereafter) captures intracellular proteins and organelles and degrades them in lysosomes. The degradation breakdown products are released from lysosomes and recycled into metabolic and biosynthetic pathways. Basal autophagy provides protein and organelle quality control by eliminating damaged cellular components. Starvation-induced autophagy recycles intracellular components into metabolic pathways to sustain mitochondrial metabolic function and energy homeostasis. Recycling by autophagy is essential for yeast and mammals to survive starvation through intracellular nutrient scavenging. Autophagy suppresses degenerative diseases and has a context-dependent role in cancer. In some models, cancer initiation is suppressed by autophagy. By preventing the toxic accumulation of damaged protein and organelles, particularly mitochondria, autophagy limits oxidative stress, chronic tissue damage and oncogenic signaling, which suppresses cancer initiation. This suggests a role for autophagy stimulation in cancer prevention, although the role of autophagy in the suppression of human cancer is unclear. In contrast, some cancers induce autophagy and are dependent on autophagy for survival. Much in the way that autophagy promotes survival in starvation, cancers can use autophagy-mediated recycling to maintain mitochondrial function and energy homeostasis to meet the elevated metabolic demand of growth and proliferation. Thus autophagy inhibition may be beneficial for cancer therapy. Moreover, tumors are more autophagy-dependent than normal tissues, suggesting that there is a therapeutic window. Despite these insights, there remain many important, unanswered questions about the exact mechanisms of autophagy-mediated cancer suppression and promotion, how relevant these observations are to humans, and whether the autophagy pathway can be modulated therapeutically in cancer.
The p53 gene contains homozygous mutations in ~50-60% of human cancers. About 90% of these mutations encode missense mutant proteins that span ~190 different codons localized in the DNA-binding domain of the gene and protein. These mutations produce a protein with a reduced capacity to bind to a specific DNA sequence that regulates the p53 transcriptional pathway. Eight of these mutations are localized in codons that account for ~28% of the total p53 mutations and these alleles appear to be selected for preferentially in human cancers of many tissue types. This article explores the question 'Why are there hotspot mutations in the p53 gene in human cancers?' Four possible reasons for this are considered; (1) the hotspot mutant alleles produce a protein that has a highly altered structure, (2) environmental mutagens produce allele-specific changes in the p53 gene, (3) these mutations arise at selected sites in the gene due to a specific DNA sequence, such as a methylated cytosine residue in a CpG dinucleotide, which has a higher mutation rate changing C to T nucleotides, (4) along with the observed change in mutant p53 proteins, which produce a loss of function (DNA binding and transcription), some mutant proteins have an allele-specific gain of function that promotes cancer. Evidence is presented that demonstrates the first three possibilities all contribute some property to this list of hotspot mutations. The fourth possibility remains to be tested.
Autophagy degrades and is thought to recycle proteins, other macromolecules, and organelles. In genetically engineered mouse models (GEMMs) for Kras-driven lung cancer, autophagy prevents the accumulation of defective mitochondria and promotes malignancy. Autophagy-deficient tumor-derived cell lines are respiration-impaired and starvation-sensitive. However, to what extent their sensitivity to starvation arises from defective mitochondria or an impaired supply of metabolic substrates remains unclear. Here, we sequenced the mitochondrial genomes of wild-type or autophagy-deficient (Atg7) Kras-driven lung tumors. Although Atg7 deletion resulted in increased mitochondrial mutations, there were too few nonsynonymous mutations to cause generalized mitochondrial dysfunction. In contrast, pulse-chase studies with isotope-labeled nutrients revealed impaired mitochondrial substrate supply during starvation of the autophagy-deficient cells. This was associated with increased reactive oxygen species (ROS), lower energy charge, and a dramatic drop in total nucleotide pools. While starvation survival of the autophagy-deficient cells was not rescued by the general antioxidant N-acetyl-cysteine, it was fully rescued by glutamine or glutamate (both amino acids that feed the TCA cycle and nucleotide synthesis) or nucleosides. Thus, maintenance of nucleotide pools is a critical challenge for starving Kras-driven tumor cells. By providing bioenergetic and biosynthetic substrates, autophagy supports nucleotide pools and thereby starvation survival.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.