By means of a technique of corona excited supersonic expansion coupled with a pinhole-type glass nozzle, we generated vibronically excited but jet-cooled benzyl-type radicals from precursor 2-chloro-4-fluorotoluene seeded in a large amount of inert carrier gas He. From an analysis of the visible vibronic emission spectrum, we found evidence of the formation of the 2-chloro-4-fluorobenzyl and 4-fluorobenzyl radicals. A possible pathway for the formation of these benzyl-type radicals is herein proposed. Also, the electronic energy in the D(1) → D(0) transition and the vibrational mode frequencies of the 2-chloro-4-fluorobenzyl radical in the ground electronic state were accurately determined, for the first time, by comparison with ab initio calculations and the known vibrational data of the precursor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.