This paper proposes an agricultural environment monitoring server system for monitoring information concerning an outdoors agricultural production environment utilizing Wireless Sensor Network (WSN) technology. The proposed agricultural environment monitoring server system collects environmental and soil information on the outdoors through WSN-based environmental and soil sensors, collects image information through CCTVs, and collects location information using GPS modules. This collected information is converted into a database through the agricultural environment monitoring server consisting of a sensor manager, which manages information collected from the WSN sensors, an image information manager, which manages image information collected from CCTVs, and a GPS manager, which processes location information of the agricultural environment monitoring server system, and provides it to producers. In addition, a solar cell-based power supply is implemented for the server system so that it could be used in agricultural environments with insufficient power infrastructure. This agricultural environment monitoring server system could even monitor the environmental information on the outdoors remotely, and it could be expected that the use of such a system could contribute to increasing crop yields and improving quality in the agricultural field by supporting the decision making of crop producers through analysis of the collected information.
Crop diseases cannot be accurately predicted by merely analyzing individual disease causes. Only through construction of a comprehensive analysis system can users be provided with predictions of highly probable diseases. In this study, cloud-based technology capable of handling the collection, analysis, and prediction of agricultural environment information in one common platform was developed. The proposed Farm as a Service (FaaS) integrated system supports high-level application services by operating and monitoring farms as well as managing associated devices, data, and models. This system registers, connects, and manages Internet of Things (IoT) devices and analyzes environmental and growth information. In addition, the IoT-Hub network model was constructed in this study. This model supports efficient data transfer for each IoT device as well as communication for non-standard products, and exhibits high communication reliability even in poor communication environments. Thus, IoT-Hub ensures the stability of technology specialized for agricultural environments. The integrated agriculture-specialized FaaS system implements specific systems at different levels. The proposed system was verified through design and analysis of a strawberry infection prediction system, which was compared with other infection models.
The system proposed in this paper collects temperature of leaves and humidity on leaves of crop. As well as greenhouse environmental information such as temperature, humidity, etc. Crop diseases, especially, have deep relationship not only with indoor environmental factors but also with humidity lasting time on leaves and temperature of leaves. Accordingly, monitoring crop itself is as important as monitoring indoor environments. Using these collected greenhouse environmental data, indoor environments can be more effectively controlled, and monitoring crop itself can contribute to improve productivity and to prevent crops from damages by blight and harmful insects. In addition, it will be possible for farmers to do control plant growth through closely studying relationship between indoor environmental information and monitored information on crop itself. Collected data can be stored to database either in server installed in greenhouse or to remote server. It is made possible to collect information and control effectively and automatically greenhouse in the site or from a remote place through web browser. System components are: temperature sensor, humidity sensor, leaf temperature sensor, leaf humidity sensor, Zigbee based wireless sensor node, relay nodes for automatic control, and data server to store greenhouse information. The system is implemented using low power wireless components, and easy to install.
Wireless Sensor Network (WSN) technology can facilitate advances in productivity, safety and human quality of life through its applications in various industries. In particular, the application of WSN technology to the agricultural area, which is labor-intensive compared to other industries, and in addition is typically lacking in IT technology applications, adds value and can increase the agricultural productivity. This study attempts to establish a ubiquitous agricultural environment and improve the productivity of farms that grow paprika by suggesting a ‘Ubiquitous Paprika Greenhouse Management System’ using WSN technology. The proposed system can collect and monitor information related to the growth environment of crops outside and inside paprika greenhouses by installing WSN sensors and monitoring images captured by CCTV cameras. In addition, the system provides a paprika greenhouse environment control facility for manual and automatic control from a distance, improves the convenience and productivity of users, and facilitates an optimized environment to grow paprika based on the growth environment data acquired by operating the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.