Crop diseases cannot be accurately predicted by merely analyzing individual disease causes. Only through construction of a comprehensive analysis system can users be provided with predictions of highly probable diseases. In this study, cloud-based technology capable of handling the collection, analysis, and prediction of agricultural environment information in one common platform was developed. The proposed Farm as a Service (FaaS) integrated system supports high-level application services by operating and monitoring farms as well as managing associated devices, data, and models. This system registers, connects, and manages Internet of Things (IoT) devices and analyzes environmental and growth information. In addition, the IoT-Hub network model was constructed in this study. This model supports efficient data transfer for each IoT device as well as communication for non-standard products, and exhibits high communication reliability even in poor communication environments. Thus, IoT-Hub ensures the stability of technology specialized for agricultural environments. The integrated agriculture-specialized FaaS system implements specific systems at different levels. The proposed system was verified through design and analysis of a strawberry infection prediction system, which was compared with other infection models.
Kubernetes, an open-source container orchestration platform, enables high availability and scalability through diverse autoscaling mechanisms such as Horizontal Pod Autoscaler (HPA), Vertical Pod Autoscaler and Cluster Autoscaler. Amongst them, HPA helps provide seamless service by dynamically scaling up and down the number of resource units, called pods, without having to restart the whole system. Kubernetes monitors default Resource Metrics including CPU and memory usage of host machines and their pods. On the other hand, Custom Metrics, provided by external software such as Prometheus, are customizable to monitor a wide collection of metrics. In this paper, we investigate HPA through diverse experiments to provide critical knowledge on its operational behaviors. We also discuss the essential difference between Kubernetes Resource Metrics (KRM) and Prometheus Custom Metrics (PCM) and how they affect HPA’s performance. Lastly, we provide deeper insights and lessons on how to optimize the performance of HPA for researchers, developers, and system administrators working with Kubernetes in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.