Since, in case of high energy piping, steam jets ejected from the rupture zone may cause damage to nearby structure, it is necessary to design it into consideration of nuclear power plant design. For the existing nuclear power plants, the ANSI / ANS 58.2 technical standard for high-energy pipe rupture was used. However, the US Nuclear Regulatory Commission (USNRC) and academia recently have pointed out the non-conservativeness of existing high energy pipe fracture evaluation methods. Therefore, it is necessary to develop a highly reliable evaluation methodology to evaluate the behavior of steam jet ejected during high energy pipe rupture and the effect of steam jet on peripheral devices and structures. In this study, we develop a method for analyzing the impact load of a jet by high energy pipe rupture, and plan to carry out an experiment to verify the evaluation methodology. In this paper, the basic data required for the design of the jet impact load experiment equipment under construction, 1) the load change according to the jet distance, 2) the load change according to the jet collision angle, 3) the load variation according to structure diameter, and 4) the load variation depending on the jet impact position, are numerically obtained using the developed steam jet analysis technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.