Forest fire is a ubiquitous disaster which has a long-term impact on the local climate as well as the ecological balance and fire products based on remote sensing satellite data have developed rapidly. However, the early forest fire smoke in remote sensing images is small in area and easily confused by clouds and fog, which makes it difficult to be identified. Too many redundant frequency bands and remote sensing index for remote sensing satellite data will have an interference on wildfire smoke detection, resulting in a decline in detection accuracy and detection efficiency for wildfire smoke. To solve these problems, this study analyzed the sensitivity of remote sensing satellite data and remote sensing index used for wildfire detection. First, a high-resolution remote sensing multispectral image dataset of forest fire smoke, containing different years, seasons, regions and land cover, was established. Then Smoke-Unet, a smoke segmentation network model based on an improved Unet combined with the attention mechanism and residual block, was proposed. Furthermore, in order to reduce data redundancy and improve the recognition accuracy of the algorithm, the conclusion was made by experiments that the RGB, SWIR2 and AOD bands are sensitive to smoke recognition in Landsat-8 images. The experimental results show that the smoke pixel accuracy rate using the proposed Smoke-Unet is 3.1% higher than that of Unet, which could effectively segment the smoke pixels in remote sensing images. This proposed method under the RGB, SWIR2 and AOD bands can help to segment smoke by using high-sensitivity band and remote sensing index and makes an early alarm of forest fire smoke.
Training a deep learning-based classification model for early wildfire smoke images requires a large amount of rich data. However, due to the episodic nature of fire events, it is difficult to obtain wildfire smoke image data, and most of the samples in public datasets suffer from a lack of diversity. To address these issues, a method using synthetic images to train a deep learning classification model for real wildfire smoke was proposed in this paper. Firstly, we constructed a synthetic dataset by simulating a large amount of morphologically rich smoke in 3D modeling software and rendering the virtual smoke against many virtual wildland background images with rich environmental diversity. Secondly, to better use the synthetic data to train a wildfire smoke image classifier, we applied both pixel-level domain adaptation and feature-level domain adaptation. The CycleGAN-based pixel-level domain adaptation method for image translation was employed. On top of this, the feature-level domain adaptation method incorporated ADDA with DeepCORAL was adopted to further reduce the domain shift between the synthetic and real data. The proposed method was evaluated and compared on a test set of real wildfire smoke and achieved an accuracy of 97.39%. The method is applicable to wildfire smoke classification tasks based on RGB single-frame images and would also contribute to training image classification models without sufficient data.
The wide application and rapid development of satellite remote sensing technology have put higher requirements on remote sensing image segmentation methods. Because of its characteristics of large image size, large data volume, and complex segmentation background, not only are the traditional image segmentation methods difficult to apply effectively, but the image segmentation methods based on deep learning are faced with the problem of extremely unbalanced data between categories. In order to solve this problem, first of all, according to the existing effective sample theory, the effective sample calculation method in the context of semantic segmentation is firstly proposed in the highly unbalanced dataset. Then, a dynamic weighting method based on the effective sample concept is proposed, which can be applied to the semantic segmentation of remote sensing images. Finally, the applicability of this method to different loss functions and different network structures is verified on the self-built Landsat8-OLI remote sensing image-based tri-classified forest fire burning area dataset and the LoveDA dataset, which is for land-cover semantic segmentation. It has been concluded that this weighting algorithm can enhance the minimal-class segmentation accuracy while ensuring that the overall segmentation performance in multi-class segmentation tasks is verified in two different semantic segmentation tasks, including the land use and land cover (LULC) and the forest fire burning area segmentation In addition, this proposed method significantly improves the recall of forest fire burning area segmentation by as much as about 30%, which is of great reference value for forest fire research based on remote sensing images.
Forest fire smoke detection based on deep learning has been widely studied. Labeling the smoke image is a necessity when building datasets of target detection and semantic segmentation. The uncertainty in labeling the forest fire smoke pixels caused by the non-uniform diffusion of smoke particles will affect the recognition accuracy of the deep learning model. To overcome the labeling ambiguity, the weighted idea was proposed in this paper for the first time. First, the pixel-concentration relationship between the gray value and the concentration of forest fire smoke pixels in the image was established. Second, the loss function of the semantic segmentation method based on concentration weighting was built and improved; thus, the network could pay attention to the smoke pixels differently, an effort to better segment smoke by weighting the loss calculation of smoke pixels. Finally, based on the established forest fire smoke dataset, selection of the optimum weighted factors was made through experiments. mIoU based on the weighted method increased by 1.52% than the unweighted method. The weighted method cannot only be applied to the semantic segmentation and target detection of forest fire smoke, but also has a certain significance to other dispersive target recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.