This paper presents a new method for 3D action recognition with skeleton sequences (i.e., 3D trajectories of human skeleton joints). The proposed method first transforms each skeleton sequence into three clips each consisting of several frames for spatial temporal feature learning using deep neural networks. Each clip is generated from one channel of the cylindrical coordinates of the skeleton sequence. Each frame of the generated clips represents the temporal information of the entire skeleton sequence, and incorporates one particular spatial relationship between the joints. The entire clips include multiple frames with different spatial relationships, which provide useful spatial structural information of the human skeleton. We propose to use deep convolutional neural networks to learn long-term temporal information of the skeleton sequence from the frames of the generated clips, and then use a Multi-Task Learning Network (MTLN) to jointly process all frames of the generated clips in parallel to incorporate spatial structural information for action recognition. Experimental results clearly show the effectiveness of the proposed new representation and feature learning method for 3D action recognition.Comment: CVPR 201
Human Action Recognition (HAR) aims to understand human behavior and assign a label to each action. It has a wide range of applications, and therefore has been attracting increasing attention in the field of computer vision. Human actions can be represented using various data modalities, such as RGB, skeleton, depth, infrared, point cloud, event stream, audio, acceleration, radar, and WiFi signal, which encode different sources of useful yet distinct information and have various advantages depending on the application scenarios. Consequently, lots of existing works have attempted to investigate different types of approaches for HAR using various modalities. In this paper, we present a comprehensive survey of recent progress in deep learning methods for HAR based on the type of input data modality. Specifically, we review the current mainstream deep learning methods for single data modalities and multiple data modalities, including the fusion-based and the co-learning-based frameworks. We also present comparative results on several benchmark datasets for HAR, together with insightful observations and inspiring future research directions.
This paper presents a new representation of skeleton sequences for 3D action recognition. Existing methods based on hand-crafted features or recurrent neural networks cannot adequately capture the complex spatial structures and the long-term temporal dynamics of the skeleton sequences, which are very important to recognize the actions. In this paper, we propose to transform each channel of the 3D coordinates of a skeleton sequence into a clip. Each frame of the generated clip represents the temporal information of the entire skeleton sequence and one particular spatial relationship between the skeleton joints. The entire clip incorporates multiple frames with different spatial relationships, which provide useful spatial structural information of the human skeleton. We also propose a multitask convolutional neural network (MTCNN) to learn the generated clips for action recognition. The proposed MTCNN processes all the frames of the generated clips in parallel to explore the spatial and temporal information of the skeleton sequences. The proposed method has been extensively tested on six challenging benchmark datasets. Experimental results consistently demonstrate the superiority of the proposed clip representation and the feature learning method for 3D action recognition compared to the existing techniques.
This letter presents SkeletonNet, a deep learning framework for skeleton-based 3D action recognition. Given a skeleton sequence, the spatial structure of the skeleton joints in each frame and the temporal information between multiple frames are two important factors for action recognition. We firstly extract body-part based features from each frame of the skeleton sequence. Compared to the original coordinates of the skeleton joints, the proposed features are translation, rotation and scale invariant. To learn robust temporal information, instead of treating the features of all frames as a time series, we transform the features into images and feed them to the proposed deep learning network which contains two parts, one to extract general features from the input images, while the other to generate a discriminative and compact representation for action recognition. The proposed method is tested on SBU kinect interaction dataset, CMU dataset and the large scale NTU RGB+D dataset and achieves state-of-the-art performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.