The series publishes 50-150 page publications on topics pertaining to computer vision and pattern recognition. The scope will largely follow the purview of premier computer science conferences, such as ICCV, CVPR, and ECCV. Potential topics include, but not are limited to:• Statistical Methods and Learning
• Performance Evaluation• Video Analysis and Event Recognition
Existing techniques for 3D action recognition are sensitive to viewpoint variations because they extract features from depth images which are viewpoint dependent. In contrast, we directly process pointclouds for cross-view action recognition from unknown and unseen views. We propose the histogram of oriented principal components (HOPC) descriptor that is robust to noise, viewpoint, scale and action speed variations. At a 3D point, HOPC is computed by projecting the three scaled eigenvectors of the pointcloud within its local spatio-temporal support volume onto the vertices of a regular dodecahedron. HOPC is also used for the detection of spatio-temporal keypoints (STK) in 3D pointcloud sequences so that view-invariant STK descriptors (or Local HOPC descriptors) at these key locations only are used for action recognition. We also propose a global descriptor computed from the normalized spatio-temporal distribution of STKs in 4-D, which we refer to as STK-D. We have evaluated the performance of our proposed descriptors against nine existing techniques on two cross-view and three single-view human action recognition datasets. The experimental results show that our techniques provide significant improvement over state-of-the-art methods.
We propose a human pose representation model that transfers human poses acquired from different unknown views to a view-invariant high-level space. The model is a deep convolutional neural network and requires a large corpus of multiview training data which is very expensive to acquire. Therefore, we propose a method to generate this data by fitting synthetic 3D human models to real motion capture data and rendering the human poses from numerous viewpoints. While learning the CNN model, we do not use action labels but only the pose labels after clustering all training poses into k clusters. The proposed model is able to generalize to real depth images of unseen poses without the need for re-training or fine-tuning. Real depth videos are passed through the model frame-wise to extract viewinvariant features. For spatio-temporal representation, we propose group sparse Fourier Temporal Pyramid which robustly encodes the action specific most discriminative output features of the proposed human pose model. Experiments on two multiview and three single-view benchmark datasets show that the proposed method dramatically outperforms existing state-of-the-art in action recognition.
Existing techniques for 3D action recognition are sensitive to viewpoint variations because they extract features from depth images which change significantly with viewpoint. In contrast, we directly process the pointclouds and propose a new technique for action recognition which is more robust to noise, action speed and viewpoint variations. Our technique consists of a novel descriptor and keypoint detection algorithm. The proposed descriptor is extracted at a point by encoding the Histogram of Oriented Principal Components (HOPC) within an adaptive spatio-temporal support volume around that point. Based on this descriptor, we present a novel method to detect Spatio-Temporal Key-Points (STKPs) in 3D pointcloud sequences. Experimental results show that the proposed descriptor and STKP detector outperform state-of-the-art algorithms on three benchmark human activity datasets. We also introduce a new multiview public dataset and show the robustness of our proposed method to viewpoint variations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.