In order to improve the detection efficiency and image quality of Si 3 N 4 ceramic bearing balls surface defects, digital image processing technology is used to analyse the information characteristics of Si 3 N 4 ceramic bearing balls surface. A multi-scale decomposition enhancement algorithm for surface defect images of Si 3 N 4 ceramic bearing balls based on the stationary wavelet transform is proposed. By building the surface defects detection system of Si 3 N 4 ceramic bearing balls, the image enhancement program based on stationary wavelet transform with index low-pass filtering and nonlinear transform enhancement is designed. Finally, the effectiveness of the algorithm is verified by experiments. The experimental results show that the algorithm is applied to the surface defects image of Si 3 N 4 ceramic bearing balls can effectively weaken the background noise and surface grinding texture, and enhance the contrast between defects and background clearly. In addition, the binary image is obtained by an adaptive threshold binary algorithm. After removing the tiny points by morphological opening operation, the defects are accurately and completely segmented, and then the Canny operator is used for edge detection to extract the edge contour of defects. When the decomposition level is set to 3, the average calculation time is 0.88 s, which are relatively short and have sufficient precision, and the algorithm can be extended to other kinds of ceramic ball surface damage detection.
Standard electrospinning deposits disorderly nanofibers on a conducting collector owing to unstable whipping of the jet. Nevertheless, biological engineering requires orderly electrospun nanofibers to improve mechanical properties and cellular proliferation. An attempt is made to fabricate well-orientated nanofibers by applying an overlapping collector. It turns out that electrospinning deposits random and disorderly nanofibers as usual even if conducting aluminum foil, as a collector, overlaps insulating poly(ethylene terephthalate) (PET) film. When insulating PET film overlapping aluminum foil is applied as a collector, the PET film accumulates ions to repel the whipping filament in the space while nonoverlapping aluminum foil attracts the filament such that electrospinning deposits orientated nanofibers on the insulating PET film.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.