The setting of a CO2 emission peak target (CEPT) will have a profound impact on Chinese industry. An objective assessment of this impact is of great significance, both for understanding/applying the forcing mechanism of CEPT, and for promoting the optimization of China’s industrial structure and the low-carbon transformation of Chinese industry at a lower cost. Based on analysis of the internal logic and operation of the forcing mechanism of CEPT, we employed the STIRPAT model. This enabled us to predict the peak path of China’s CO2 emissions, select the path values that would achieve the CEPT with the year 2030 as the constraint condition, construct a multi-objective and multi-constraint input/output optimization model, employ the genetic algorithm to solve the model, and explore the industrial structure optimization and low-carbon transformation of Chinese industry. The results showed that the setting of CEPT will have a significant suppression effect on high-carbon emission industries and a strong boosting effect on low-carbon emission industries. The intensity of the effect is positively correlated with the target intensity of the CO2 emissions peak. Under the effect of the forcing mechanism of CEPT, Chinese industry can realize a low-carbon transition and the industrial structure can realize optimization. The CEPT is in line with sustainable development goals, but the setting of CEPT may risk causing excessive shrinkage of basic industries—which should be prevented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.