ObjectivesRheumatoid arthritis (RA), systemic lupus erythematosus (SLE) and primary Sjögren’s syndrome (pSS) share many clinical manifestations and serological features. The aim of this study was to identify the common transcriptional profiling and composition of immune cells in peripheral blood in these autoimmune diseases (ADs).MethodsWe analysed bulk RNA-seq data for enrichment of biological processes, transcription factors (TFs) and deconvolution-based immune cell types from peripheral blood mononuclear cells (PBMCs) in 119 treatment-naive patients (41 RA, 38 pSS, 28 SLE and 12 polyautoimmunity) and 20 healthy controls. The single-cell RNA-seq (scRNA-seq) and flow cytometry had been performed to further define the immune cell subsets on PBMCs.ResultsSimilar transcriptional profiles and common gene expression signatures associated with nucleosome assembly and haemostasis were identified across RA, SLE, pSS and polyautoimmunity. Distinct TF ensembles and gene regulatory network were mainly enriched in haematopoiesis. The upregulated cell-lineage-specific TFs PBX1, GATA1, TAL1 and GFI1B demonstrated a strong gene expression signature of megakaryocyte (MK) expansion. Gene expression-based cell type enrichment revealed elevated MK composition, specifically, CD41b+CD42b+ and CD41b+CD61+ MKs were expanded, further confirmed by flow cytometry in these ADs. In scRNA-seq data, MKs were defined by TFs PBX1/GATA1/TAL1 and pre-T-cell antigen receptor gene, PTCRA. Cellular heterogeneity and a distinct immune subpopulation with functional enrichment of antigen presentation were observed in MKs.ConclusionsThe identification of MK expansion provided new insights into the peripheral immune cell atlas across RA, SLE, pSS and polyautoimmunity. Aberrant regulation of the MK expansion might contribute to the pathogenesis of these ADs.
Piercing–sucking insects are prominent phloem-feeding insect pests and understanding their feeding behavior and life characteristics plays a crucial role in studying insect host adaptability. The green peach aphid, Myzus persicae (Hemiptera: Aphididae), is one of the most prominent pests in tobacco-growing areas around the world. This study evaluated the adaptability of M. persicae to five host plants: tobacco, radish, Chinese cabbage, Brassica oleracea, and rape using the electropenetrography, age-stage, two-sex life table and population dynamics. The results demonstrated that the feeding behavior of M. persicae differed significantly according to the target hosts. M. persicae exhibited reduced pathway activities and increased phloem sap ingestion on radish, whereas the opposite was observed on Chinese cabbage. Additionally, the mechanical difficulties of M. persicae mouthparts in the probe pathway phase were significantly lower on tobacco and radish than on other host plants. Life table parameters indicated that for M. persicae reared on radish, preadult duration, longevity, and total preoviposition increased significantly and the fecundity was the highest. Furthermore, the net reproductive rate (R0) increased significantly. The population number of M. persicae on radish after 15 days was significantly higher than that on other hosts, except for tobacco. Although M. persicae can successfully survive on the five plants, our results demonstrated that radish is the optimal host. These results provide significant information for understanding the population dynamics of M. persicae and on different host crops integrated management strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.