Recent years have witnessed a significant advancement in brain imaging techniques that offer a non-invasive approach to mapping the structure and function of the brain. Concurrently, generative artificial intelligence (AI) has experienced substantial growth, involving using existing data to create new content with a similar underlying pattern to real-world data. The integration of these two domains, generative AI in neuroimaging, presents a promising avenue for exploring various fields of brain imaging and brain network computing, particularly in the areas of extracting spatiotemporal brain features and reconstructing the topological connectivity of brain networks. Therefore, this study reviewed the advanced models, tasks, challenges, and prospects of brain imaging and brain network computing techniques and intends to provide a comprehensive picture of current generative AI techniques in brain imaging. This review is focused on novel methodological approaches and applications of related new methods. It discussed fundamental theories and algorithms of four classic generative models and provided a systematic survey and categorization of tasks, including co-registration, super-resolution, enhancement, classification, segmentation, cross-modality, brain network analysis, and brain decoding. This paper also highlighted the challenges and future directions of the latest work with the expectation that future research can be beneficial.
<abstract><p>Brain community detection is an efficient method to represent the communities of brain networks. However, time-variable functions of the brain and the intricate brain community structure impose a great challenge on it. In this paper, a time-sequential graph adversarial learning (TGAL) framework is proposed to detect brain communities and characterize the structure of communities from brain networks. In the framework, a novel time-sequential graph neural network is designed as an encoder to extract efficient graph representations by spatio-temporal attention mechanism. Since it is difficult to capture the community structure, the measurable modularity loss is used to optimize by maximizing the modularity of the community. In addition, the framework employs an adversarial scheme to guide the learning of representation. The effectiveness of our model is shown through experiments on the real-world brain network datasets, and the great performance of brain community detection demonstrates the advantage of the proposed framework.</p></abstract>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.