Recent years have witnessed a significant advancement in brain imaging techniques that offer a non-invasive approach to mapping the structure and function of the brain. Concurrently, generative artificial intelligence (AI) has experienced substantial growth, involving using existing data to create new content with a similar underlying pattern to real-world data. The integration of these two domains, generative AI in neuroimaging, presents a promising avenue for exploring various fields of brain imaging and brain network computing, particularly in the areas of extracting spatiotemporal brain features and reconstructing the topological connectivity of brain networks. Therefore, this study reviewed the advanced models, tasks, challenges, and prospects of brain imaging and brain network computing techniques and intends to provide a comprehensive picture of current generative AI techniques in brain imaging. This review is focused on novel methodological approaches and applications of related new methods. It discussed fundamental theories and algorithms of four classic generative models and provided a systematic survey and categorization of tasks, including co-registration, super-resolution, enhancement, classification, segmentation, cross-modality, brain network analysis, and brain decoding. This paper also highlighted the challenges and future directions of the latest work with the expectation that future research can be beneficial.
In recent years, human activity recognition (HAR) technologies in e-health have triggered broad interest. In literature, mainstream works focus on the body's spatial information (i.e. postures) which lacks the interpretation of key bioinformatics associated with movements, limiting the use in applications requiring comprehensively evaluating motion tasks' correctness. To address the issue, in this article, a Wearables-based Multi-column Neural Network (WMNN) for HAR based on multi-sensor fusion and deep learning is presented. Here, the Tai Chi Eight Methods were utilized as an example as in which both postures and muscle activity strengths are significant. The research work was validated by recruiting 14 subjects in total, and we experimentally show 96.9% and 92.5% accuracy for training and testing, for a total of 144 postures and corresponding muscle activities. The method is then provided with a human-machine interface (HMI), which returns users with motion suggestions (i.e. postures and muscle strength). The report demonstrates that the proposed HAR technique can enhance users' self-training efficiency, potentially promoting the development of the HAR area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.