Insect viruses have evolved strategies to control the host RNAi antiviral defense mechanism. In nature Drosophila C Virus (DCV) infection causes low mortality and persistent infection, whereas the closely related Cricket Paralysis Virus (CrPV) causes a lethal infection. We show these viruses use different strategies to modulate the host RNAi defense machinery. The DCV RNAi suppressor (DCV-1A) binds to long double-stranded RNA (dsRNA) and prevents processing by Dicer2. In contrast, the CrPV suppressor (CrPV-1A) interacts with the endonuclease Ago2 and inhibits its activity, without affecting the miRNA-Ago1 mediated silencing. The link between viral RNAi suppressors and the outcome of infection was examined using recombinant Sindbis viruses encoding either CrPV-1A or DCV-1A. Flies infected with Sindbis virus expressing CrPV-1A showed a dramatic increase in virus production, spread and mortality. In contrast, Sindbis pathogenesis was only modestly increased by expression of DCV- 1A. We conclude that RNAi suppressors function as virulence factors.
SUMMARY Apolipoprotein (apo) E has important and diverse functions in neurobiology, and apoE4 is the major known genetic risk factor for Alzheimer’s disease. Here we report that adult neural stem/progenitor cells (NSCs) express apoE. In apoE knockout mice, neurogenesis in the hippocampus was ~60% lower than in wildtype mice, and most newborn cells developed into astrocytes rather than into neurons as in wildtype mice. This impairment was not observed in human apoE3 knock-in mice. In apoE4 knock-in mice, however, the maturation and dendritic development of newborn hippocampal neurons was significantly impaired as a result of apoE4 and its fragment-caused GABAergic interneuron dysfunction. This impairment was fully rescued by treatment with a GABAA receptor potentiator. These findings demonstrate the importance of apoE in adult hippocampal neurogenesis and show that apoE4 inhibits hippocampal neurogenesis by impairing neuronal maturation mediated by GABA signaling.
Cytochromes P450 (P450s) incur phosphorylation. Although the precise role of this post-translational modification is unclear, marking P450s for degradation is plausible. Indeed, we have found that after structural inactivation, CYP3A4, the major human liver P450, and its rat orthologs are phosphorylated during their ubiquitin-dependent proteasomal degradation. Peptide mapping coupled with mass spectrometric analyses of CYP3A4 phosphorylated in vitro by protein kinase C (PKC) previously identified two target sites, Thr 264 and Ser 420 . We now document that liver cytosolic kinases additionally target Ser 478 as a major site. To determine whether such phosphorylation is relevant to in vivo CYP3A4 degradation, wild type and CYP3A4 with single, double, or triple Ala mutations of these residues were heterologously expressed in Saccharomyces cerevisiae pep4⌬ strains. We found that relative to CYP3A4wt, its S478A mutant was significantly stabilized in these yeast, and this was greatly to markedly enhanced for its S478A/T264A, S478A/ S420A, and S478A/T264A/S420A double and triple mutants. Similar relative S478A/T264A/S420A mutant stabilization was also observed in HEK293T cells. To determine whether phosphorylation enhances CYP3A4 degradation by enhancing its ubiquitination, CYP3A4 ubiquitination was examined in an in vitro UBC7/gp78-reconstituted system with and without cAMPdependent protein kinase A and PKC, two liver cytosolic kinases involved in CYP3A4 phosphorylation. cAMPdependent protein kinase A/PKC-mediated phosphorylation of CYP3A4wt but not its S478A/T264A/S420A mutant enhanced its ubiquitination in this system. Together, these findings indicate that phosphorylation of CYP3A4 Ser 478 , Thr 264 , and Ser 420 residues by cytosolic kinases is important both for its ubiquitination and proteasomal degradation and suggest a direct link between P450 phosphorylation, ubiquitination, and degradation.Hepatic cytochromes P450 (P450s) 3 are integral endoplasmic reticulum (ER)-anchored hemoproteins engaged in the oxidative biotransformation of various endo-and xenobiotics. Of these, human CYP3A4 is the most dominant liver enzyme, accounting for Ͼ30% of the hepatic microsomal P450 complement, and responsible for the oxidative metabolism of over 50% of clinically relevant drugs (1). In common with all the other ER-bound P450s, CYP3A4 is a monotopic protein with its N-terminal Ϸ33-residue domain embedded in the ER membrane with the bulk of its structure in the cytosol. Our in vivo studies of the heterologously expressed CYP3A4 in the yeast Saccharomyces cerevisiae as well as of its rat liver CYP3A2/ 3A23 orthologs in primary hepatocytes have revealed that human and rat liver CYPs 3A are turned over via ubiquitin (Ub)-dependent proteasomal degradation (UPD) (2-8). Thus, CYPs 3A represent excellent prototypic substrates of ER-associated degradation (ERAD), specifically of the ERAD-C pathway (6 -11). Consistent with this CYP3A ERAD process, our studies of in vivo and/or in vitro reconstituted systems have led us to conclude tha...
Caloric restriction (CR) is known to extend life span across species; however, the molecular mechanisms are not well understood. We investigate the mechanism by which glucose restriction (GR) extends yeast replicative life span, by combining ribosome profiling and RNA-seq with microfluidic-based single-cell analysis. We discovered a cross-talk between glucose sensing and the regulation of intracellular methionine: GR down-regulated the transcription and translation of methionine biosynthetic enzymes and transporters, leading to a decreased intracellular methionine concentration; external supplementation of methionine cancels the life span extension by GR. Furthermore, genetic perturbations that decrease methionine synthesis/uptake extend life span. These observations suggest that intracellular methionine mediates the life span effects of various nutrient and genetic perturbations, and that the glucose-methionine cross-talk is a general mechanism for coordinating the nutrient status and the translation/growth of a cell. Our work also implicates proteasome as a downstream effector of the life span extension by GR.
We have developed and applied a method unifying fluorescence microscopy and mass spectrometry for studying spatial and temporal properties of proteins and protein complexes in yeast cells. To combine the techniques, first we produced a variety of DNA constructs that can be used for genomic tagging of proteins with modular fluorescent and affinity tags. The modular tag consists of one of the multiple versions of monomeric fluorescent proteins fused to a variety of small affinity epitopes. After this step we tested the constructs by tagging two yeast proteins, Pil1 and Lsp1, the core components of eisosomes, the large protein complexes involved in endocytosis in Saccharomyces cerevisiae, with a variety of fluorescent and affinity probes. Among the modular tags produced we found several combinations that were optimal for determining subcellular localization and for purifying the tagged proteins and protein complexes for the detailed analysis by mass spectrometry. And finally, we applied the designed method for finding the new protein components of eisosomes and for gaining new insights into molecular mechanisms regulating eisosome assembly and disassembly by reversible phosphorylation and dephosphorylation. Our results indicate that this approach combining fluorescence microscopy and mass spectrometry into a single method provides a unique perspective into molecular mechanisms regulating composition and dynamic properties of the protein complexes in living cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.