The chemical state of N in N-doped amorphous Ge2Sb2Te5 (a-GST) samples with 0–14.3Nat.% doping concentrations was investigated by high-resolution x-ray photoelectron spectroscopy (HRXPS) and Ge K-edge x-ray absorption spectroscopy (XAS). HRXPS showed negligible change in the Te 4d and Sb 4d core-level spectra. In the Ge 3d core-level spectra, a Ge nitride (GeNx) peak developed at the binding energy of 30.2eV and increased in intensity as the N-doping concentration increased. Generation of GeNx was confirmed by the Ge K-edge absorption spectra. These results indicate that the N atoms bonded with the Ge atoms to form GeNx, rather than bonding with the Te or Sb atoms. It has been suggested that the formation of Ge nitride results in increased resistance and phase-change temperature.
X-ray absorption near-edge structure (XANES) and x-ray emission spectroscopy (XES) measurements were used to investigate the effect of Mg doping in ZnO nanorods. The intensities of the features in the O K-edge XANES spectra of Zn 1-x Mg x O nanorods are lower than those of pure ZnO nanorods, suggesting that Mg doping increases the negative effective charge of O ions. XES and XANES spectra of O 2p states indicate that Mg doping raises (lowers) the conduction-band-minimum (valence-band-maximum) and increases the bandgap. The bandgap is found to increase linearly with the Mg content, as revealed by photoluminescence and combined XANES and XES measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.