Zingerone (ZGR), a phenolic alkanone isolated from ginger, has been reported to possess pharmacological activities such as anti-inflammatory and anti-apoptotic effects. This study was initiated to determine whether ZGR could modulate renal functional damage in a mouse model of sepsis and to elucidate the underlying mechanisms. The potential of ZGR treatment to reduce renal damage induced by cecal ligation and puncture (CLP) surgery in mice was measured by assessment of serum creatinine, blood urea nitrogen (BUN), lipid peroxidation, total glutathione, glutathione peroxidase activity, catalase activity, and superoxide dismutase activity. Treatment with ZGR resulted in elevated plasma levels of BUN and creatinine, and of protein in urine in mice with CLP-induced renal damage. Moreover, ZGR inhibited nuclear factor-κB activation and reduced the induction of nitric oxide synthase and excessive production of nitric acid. ZGR treatment also reduced the plasma levels of interleukin-6 and tumor necrosis factor-α, reduced lethality due to CLP-induced sepsis, increased lipid peroxidation, and markedly enhanced the antioxidant defense system by restoring the levels of superoxide dismutase, glutathione peroxidase, and catalase in kidney tissues. Our study showed renal suppressive effects of zingerone in a mouse model of sepsis, suggesting that ZGR protects mice against sepsis-triggered renal injury.
High mobility group box 1 (HMGB1) is considered as a late mediator of sepsis and the inhibition of HMGB1-mediated severe inflammatory responses, and restoration of endothelial integrity have emerged as attractive therapeutic strategies for the management of sepsis. Ginsenoside Rh1, a protopanaxatriol type ginsenoside, is one of the major bioactive components of Korean red ginseng, which has been increasingly used for enhancing cognition and physical health worldwide. Ginsenoside Rh1 exhibits potent biological activities such as antistress, anti-oxidant, anti-inflammatory and immunomodulatory effects. We examined the effects of ginsenoside Rh1 on HMGB1-mediated septic responses and survival rate in a mouse model of sepsis. Ginsenoside-Rh1 was administered after the HMGB1 challenge. The antiseptic activity of ginsenoside Rh1 was determined by measuring the permeability, leukocyte adhesion and migration, activation of pro-inflammatory proteins in HMGB1-activated human umbilical vein endothelial cells (HUVECs) and mice, and the survival rate in a sepsis mouse model. Ginsenoside Rh1 significantly reduced HMGB1 release in lipopolysaccharide (LPS)-activated HUVECs. Furthermore, ginsenoside Rh1 suppressed the production of tumor necrosis factor (TNF)-[Formula: see text], interleukin (IL)-6, activation of nuclear factor (NF)-[Formula: see text]B and extracellular signal-regulated kinase (ERK) 1/2 by HMGB1. Ginsenoside Rh1 also inhibited HMGB1-mediated hyperpermeability and leukocyte migration in mice. In addition, treatment with ginsenoside Rh1 reduced the cecal ligation and puncture (CLP)-induced release of HMGB1, sepsis-related mortality and tissue injury in vivo. Our results indicated that ginsenoside Rh1 might be useful in the treatment of sepsis by targeting HMGB1.
High mobility group box 1 (HMGB1) is recognized as a late mediator of sepsis, and the inhibition of HMGB1 release and recovery of vascular barrier integrity have emerged as attractive therapeutic strategies for the management of sepsis. We tested the hypothesis that aloin induces sirtuin 1 (SIRT1) and heme oxygenase (HO)-1, which inhibit HMGB1 release in lipopolysaccharide (LPS)-stimulated cells, thereby inhibiting HMGB1-induced hyperpermeability and increasing the survival of septic mice. Aloin was administered after LPS or HMGB1 challenge, and the antiseptic activity of aloin was determined from measurements of permeability, activation of pro-inflammatory proteins and production of markers for tissue injury in HMGB1-activated human umbilical vein endothelial cells (HUVECs) and a cecal ligation and puncture (CLP)-induced sepsis mouse model. Aloin significantly reduced HMGB1 release in LPS-activated HUVECs via SIRT1-mediated HMGB1 deacetylation and the PI3K/Nrf2/heme oxygenase (HO)-1 signaling axis. Aloin also suppressed the production of tumor necrosis factor (TNF)-[Formula: see text] and interleukin (IL)-6, as well as the activation of nuclear factor (NF)-[Formula: see text]B and extracellular signal-regulated kinase 1/2 (ERK 1/2) by HMGB1. Moreover, aloin restored HMGB1-mediated vascular disruption and inhibited vascular hyperpermeability in mice. In addition, treatment with aloin reduced the CLP-induced release of HMGB1, sepsis-related mortality and tissue injury in vivo. Our results suggest that aloin reduces HMGB1 release and sepsis-related mortality by activating SIRT1 and PI3K/Nrf2/HO-1 signals, indicating that aloin has potential for the treatment of sepsis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.