This paper employed and developed the wave-based vibration approach to analyze the band-gap characteristics of a locally resonant (LR) beam with L-joint, which is common in engineering practices. Based on the proposed modular approach, where the discontinuities on the beam are created as modules, the design and modeling work for such an LR beam can be simplified considerably. Then, three kinds of LR beams with an L-joint suspended with transverse-force type resonators and two cells of longitudinal-force-moment type resonators are analyzed, respectively, to show their suppression ability on the axial wave’s propagation and widened effect on the low-frequency band-gaps, where the longitudinal-force-moment type resonators at the 3rd–4th cells can better suppress the propagation of the axial waves. Meanwhile, the proposed analysis results are compared with the ones obtained with the finite element method and further verified the accuracy and efficiency of the wave-based vibration approach. The aim of this paper is to provide an efficient method for the analysis and design of the LR beam with L-joint for low-frequency vibration attenuation in engineering practices.
The cyclic behavior of lee wave systems, generated by stratified flow over mountains is investigated by the Advanced Regional Prediction System (ARPS) model. The results show that, surface friction has a direct impact upon the number and timing of mountain gravity waves cycle generation. Cyclic generation of mountain lee waves and down-slope winds was found to be extremely sensitive to the magnitude of the surface drag coefficient, where mountain waves amplitude and intensity varies with the magnitude of the drag coefficient, and the interaction of mountain waves and boundary layer process determinates the wave characteristics. For the typical drag Cd=10–3, surface friction promotes the formation of the stationary mountain lee waves and hydraulic jump, especially, promotes boundary layer separation, the generation of low-level turbulent zones and rotor circulation or reversal flow within boundary layer. When drag coefficient becomes Cd=10–4, lee waves remain steady states and the first evolution cycle maintains much longer than that of Cd=10–3. In the case of the highest drag coefficient Cd=10–2, surface friction suppresses wave breaking and the onset of hydraulic jump, and reduces greatly the amplitude and intensity of lee waves and down slope wind.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.