Quinoa (Chenopodium quinoa Willd.) with a history of 5000 years as food is extremely rich in nutrients and bioactive compounds, including γ-aminobutyric acid (GABA), a natural four-carbon non-protein amino acid with great benefits to human health. In quinoa, GABA generally increases with the germination time, but the underlying molecular mechanism is unclear. Here, we found that the GABA content in quinoa varied significantly among 25 varieties using an automatic amino acid analyzer. Next, six varieties (three low-GABA and three high-GABA varieties) were used for further analyses. The content of GABA in six varieties all showed an increasing trend after germination. In addition, Pearson's correlation analysis showed that the changes in GABA content were closely related to the transcript level or enzyme activity of three key enzymes including glutamate decarboxylase (GAD), GABA transaminase (GABA-T), and succinate-semialdehyde dehydrogenase (SSADH) in the GABA shunt, especially GAD. Based on RNA-sequencing analysis, eight GAD genes, two GABA-T genes, one SSADH gene, nine polyamine oxidase (PAO) genes, five diamine oxidase (DAO) genes, four 4-aminobutyraldehyde dehydrogenase (BADH) genes, and three thermospermine synthase ACAULIS5 (ACL5) genes were identified. Among these, CqGAD8 and CqGABA-T2 may make a greater contribution to GABA accumulation during quinoa germination.
Anthocyanins are water-soluble plant pigments mainly stored in the plant vacuoles. Glutathione S-transferases (GSTs) are a multifunctional enzyme family, which can regulate substance metabolism and biological and abiotic stresses in plants. However, few reports were focused on the involvement of GSTs in anthocyanin sequestration in red skin radish. Here, we identified a glutathione S-transferase gene RsGSTF12 that played roles in anthocyanin sequestration in radish. The bioinformatics analysis revealed that RsGSTF12 belonged to the phi (F) class of glutathione S-transferases and showed a high homology with AtGSTF12, followed by AtGSTF11. The subcellular localization assay showed that RsGSTF12 was located in the endoplasmic reticulum and tonoplast. Temporal and spatial gene expression-specific analyses uncovered a strong correlation of RsGSTF12 with anthocyanin accumulation in radish sprouts. The anthocyanin solubility assay found RsGSTF12 was capable of improving cyanidin water solubility in vitro. Transiently expressing RsGSTF12 in radish cotyledons was able to increase their anthocyanin sequestrations. Furthermore, the functional complementation and overexpression of the Arabidopsis thaliana tt19 mutant and wild type demonstrated that RsGSTF12 might play an indispensable role in anthocyanin accumulation in radish. Taken together, we provide compelling evidence that RsGSTF12 functions critically in how anthocyanins are sequestrated in radish, which may enrich our understanding of the mechanism of anthocyanin sequestration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.