Silk protein builds up one of the strongest fibers superior to most synthetic and natural polymers. However, the strengthening mechanisms of the silk proteins remain largely elusive because of their complex nanocomposite structures. Here, we report an unusual behavior of this kind of material that is distinctively different from those of metals and other polymers. We find that there are multiple interface microcracks nucleating and stacking under the shear loading, dividing the interchain interface into small segments, by which the silk protein can achieve a high strength even with the ultralong chains. This is a new strategy of microstructure design of soft matter that could avoid the "larger is weaker" fate due to the increase of the chain length. This novel mechanism is crucial for building strong polymer materials with long chain molecules and at the same time retaining their complex functional and structural properties.
Enhanced vapor condensation is a critical issue for improving the efficiency of energy conversion, thermal management, water recovery, and treatment. Low-energy surfaces incorporating micro/nanoscale roughness have been reported to significantly promote vapor condensation. In this research, the mesh structures of super-aligned carbon nanotube (SACNT) films were prepared by crossing monolayer SACNT films on a copper substrate. Then, the sustaining dropwise condensation was achieved on the SACNT mesh-coated surface. The SACNT mesh-coated surface could obviously enhance the coalescence and sweeping departure of the condensing droplets. Additionally, the measured overall heat transfer coefficient (HTC) of the SACNT meshcoated surface demonstrated a 36% enhancement compared to that on the bare copper surface. The parallel stacking of SACNT films with different groove structures was also studied, and a 15% enhancement in the HTC was shown as compared with the bare copper surface. Furthermore, we developed a morphology-based model to theoretically analyze the condensation-enhancement mechanism on a SACNT mesh-coated surface. The SACNT surfaces also have advantages of low cost, durability, flexibility, and extensibility. Our findings revealed that the SACNT films could be readily used as vapor condensation-strengthening surfaces, further extending their potential applications to industrial equipment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.