These authors contributed equally to this work Background: Pancreatic cancer (PC) is a highly lethal malignancy worldwide. Our previous study indicated that overexpression of USP34 could promote tumor growth in PC cells. Therefore, this study aimed to further investigate the role of USP34 during the tumorigenesis of PC. Methods: The level of USP34 in PANC-1 and MiaPaCa-2 cells transfected with USP34-shRNAs was detected by RT-qPCR. Moreover, transwell migration and Annexin V/PI analysis were conducted to detect cell migration and apoptosis, respectively. Results: In this study, downregulation of USP34 markedly inhibited proliferation and migration, and induced apoptosis in PANC-1 cells. Moreover, silencing of USP34 obviously downregulated the levels of PRR11 and p-p38 in PANC-1 cells. An in vivo study in nude mice bearing PANC-1 cell xenografts confirmed these results. Conclusion: Downregulation of USP34 could inhibit proliferation and migration in PANC-1 cells via inhibiting PRR11, and inactivating p38 MAPK signaling. Therefore, USP34 might be a potential therapeutic target for the treatment of PC.
Pancreatic cancer is known to be a fatal disease, which is difficult to be diagnosed in its early stages. Ubiquitin-Specific Protease 34 (USP34) are closely related to human cancers in the development and progression. However, there are rarely studies about the role of USP34 in pancreatic cancer. Thus, we aimed to investigate the effect of USP34 in human pancreatic cancer. Short-hairpin RNA targeting USP34 (USP34-shRNA) and USP34 overexpression lentivirus were used in the current study. The level of USP34 in human pancreatic cancer (PANC-1) cells were then analyzed by quantitative (q)RT-PCR. In addition, Western blotting was used to examine phosphorylated (p)-AKT, p-protein kinase C (PKC) and p-extracellular signal-regulated kinase (ERK) protein levels. CCK-8 assay, flow cytometry, and migration assay were used to detect cell proliferation, apoptosis and migration, respectively in vitro. According to the result of qRT-PCR and Western blotting, USP34-shRNA1 significantly downregulated USP34 gene level in PANC-1 cell. Subsequently, Western blotting assay indicated that USP34 silencing significantly down-regulated the expression of p-AKT and p-PKC in cells. On the other hand, USP34 overexpressing remarkably up-regulated the expression of p-AKT and p-PKC in cells. In addition, USP34 overexpression promoted PANC-1 cell proliferation and migration via up-regulating the proteins of p-AKT and p-PKC. Moreover, USP34 overexpression reversed AKT inhibitor and PKC inhibitor induced PACN-1 cell apoptosis. Our results indicated USP34 regulated h PANC-1 cell survival via AKT and PKC pathways, and which played a pro-survival role in human pancreatic cancer. Therefore, we suggested USP34 could be a potential therapeutic target for pancreatic cancer.
Mastitis is a common disease in dairy cows that is mostly caused by E. coli, and it brings massive losses to the dairy industry. N6-Methyladenosine (m6A), a methylation at the N6 position of RNA adenine, is a type of modification strongly associated with many diseases. However, the role of m6A in mastitis has not been investigated. In this study, we used MeRIP-seq to sequence the RNA of bovine mammary epithelial cells treated with inactivated E. coli for 24 h. In this in vitro infection model, there were 16,691 m6A peaks within 7066 mRNA transcripts in the Con group and 10,029 peaks within 4891 transcripts in the E. coli group. Compared with the Con group, 474 mRNAs were hypermethylated and 2101 mRNAs were hypomethylated in the E. coli group. Biological function analyses revealed differential m6A-modified genes mainly enriched in the MAPK, NF-κB, and TGF-β signaling pathways. In order to explore the relationship between m6A and mRNA expression, combined MeRIP-seq and mRNA-seq analyses revealed 212 genes with concomitant changes in the mRNA expression and m6A modification. This study is the first to present a map of RNA m6A modification in mastitis treated with E. coli, providing a basis for future research.
Mastitis is one of the most common and significant infectious diseases in dairy cattle and is responsible for significant financial losses for the dairy industry globally. An important pathogen of bovine mastitis, Mycoplasma bovis (M. bovis) has a high infection rate, requires a long course of treatment, and is difficult to cure. Bovine mammary epithelial cells (BMECs) are the first line of defense of the mammary gland, and their natural immune system plays a critical role in resisting M. bovis infection. This study aimed to explore and demonstrate the regularity of Toll-like receptors (TLRs) activation during M. bovis infection and their function during M. bovis mastitis. An in vitro model of M. bovis-induced mastitis showed that the expression of IL-6, IL-8, and TNF-α increased significantly following infection. M. bovis infection also upregulated the expression of TLR1/2/6 on the cell membrane and TLR3/9 in the cytoplasm. There is a crosstalk effect between TLR1–TLR2 and TLR2–TLR6. Furthermore, M. bovis infection was found to activate the TLR1/2/6/9/MyD88/NF-κB and TLR3/TRIF/IRF signal transduction pathways, which in turn activate inflammatory factors. These findings lay the theoretical foundation for understanding the pathogenesis of M. bovis, permitting the development of effective measures for preventing and controlling M. bovis mastitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.