Breast cancer, especially estrogen receptor (ER)‐negative breast cancer, remains hard to treat despite major advances in surgery and adjuvant therapies. The deletion of ER has been consistently associated with tumor progression, recurrence, metastasis and poor prognosis. Among other differences in biological features, ER‐negative breast cancers express high levels of interleukin‐8 (IL‐8), whereas their ER‐positive counterparts do not. IL‐8 is a multi‐functional cytokine with many important biological functions in tumor formation and development. We aimed to study the role(s) of IL‐8 in ER‐negative breast cancer progression by using RNA interference to specifically knockdown IL‐8 expression in ER‐negative breast cancer cell lines MDA‐MB‐231 and MDA‐MB‐468. In vitro, suppression of IL‐8 led to significant reductions in cell invasion (p < 0.001), but had no effects on cell proliferation or cell cycle. In vivo, suppression of IL‐8 significantly reduced the microvessel density (p < 0.05), and markedly reduced neutrophil infiltration into the tumors (p < 0.05). In contrast to in vitro observations, suppression of IL‐8 promoted tumor growth in nude mice (p < 0.05). Our results imply that the complex roles of IL‐8 in the regulation of ER‐negative breast cancer progression may in part be related to its potent chemotactic effects on neutrophils, which in turn mediates many of the biological functions of IL‐8. © 2007 Wiley‐Liss, Inc.
EGF activates NF-kB, and constitutively activated NF-kB contributes to EGFR mutation-associated tumorigenesis, but it remains unclear precisely how EGFR signaling leads to NF-kB activation. Here we report that CARMA3, a caspase recruitment domain (CARD)-containing scaffold molecule, is required for EGF-induced NFkB activation. CARMA3 deficiency impaired the activation of the IKK complex following EGF stimulation, resulting in a defect of EGF-induced IkBa phosphorylation and NF-kB activation. We found that CARMA3 and Bcl10 contributed to several characteristics of EGFR-associated malignancy, including proliferation, survival, migration, and invasion. Most importantly, CARMA3 contributed to tumor growth in vivo. Our findings elucidate a crucial link between EGFR-proximal signaling components and the downstream IKK complex, and they suggest a new therapeutic target for treatment of EGFR-driven cancers. Cancer Res; 71(6); 2183-92. Ó2011 AACR.
Key Points Elevated Jun signaling promotes lymphoma growth and dissemination to extranodal sites. Jun-regulated genes mediate the interaction of malignant cells with stromal cells and adhesion to extracellular matrix proteins.
Breast cancer is one of the most common malignancies and a major cause of cancer-related mortality all over the world. A growing body of reports revealed that microRNAs play essential roles in the progression of cancers. Aberrant expression of miR-503 has been reported in several kinds of cancer. The aim of the current study was to elucidate the role of miR-503 in the pathogenesis of breast cancer. In the present study, our results suggested that miR-503 expression was markedly downregulated in breast cancer tissues and cells. Overexpression of miR-503 in breast cancer cell lines reduced cell proliferation through inducing G0/G1 cell cycle arrest by targeting CCND1. Together, our findings provide new knowledge regarding the role of miR-503 in the progression of breast cancer and indicate the role of miR-503 as a tumor suppressor microRNA (miRNA) in breast cancer.
Epidermal growth factor receptor (EGFR) family members play pivotal roles in cell proliferation, differentiation and survival. Overexpression and mutations of EGFRs, or aberrant EGFR signaling are commonly associated with the development of various cancers, where constitutive NF-κB activation is often found to promote the expression of various proteins involved in the proliferation, survival, migration and epithelial-to-mesenchymal transition of cancer cells. However, the mechanism of EGFR-induced NF-κB activation is not fully defined. Here, we used a Bimolecular Fluorescence Complementation-based functional genomics method to perform a high throughput screening and identified TMEM43/LUMA as a critical component in EGFR signaling network, mediating EGFR-induced NF-κB activation. Our data show that EGFR recruits TMEM43 following EGF stimulation. TMEM43 interacts with the scaffold protein CARMA3 and its associating complex to induce downstream NF-κB activation, and plays a critical role in controlling cell survival. TMEM43 deficiency significantly affects colony formation, survival of anoikis-induced cell death, migration and invasion of cancer cells in vitro, as well as tumor progression in vivo. Importantly, higher expression of TMEM43 closely correlates with brain tumor malignancy, and suppression of TMEM43 expression in brain tumor cells inhibited their growth both in vitro and in vivo. Altogether, our studies reveal a crucial link of EGF receptor to NF-κB activation and tumor progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.