SignificanceA high-quality genome assembly of Camellia sinensis var. sinensis facilitates genomic, transcriptomic, and metabolomic analyses of the quality traits that make tea one of the world’s most-consumed beverages. The specific gene family members critical for biosynthesis of key tea metabolites, monomeric galloylated catechins and theanine, are indicated and found to have evolved specifically for these functions in the tea plant lineage. Two whole-genome duplications, critical to gene family evolution for these two metabolites, are identified and dated, but are shown to account for less amplification than subsequent paralogous duplications. These studies lay the foundation for future research to understand and utilize the genes that determine tea quality and its diversity within tea germplasm.
BackgroundTea is one of the most popular non-alcoholic beverages worldwide. However, the tea plant, Camellia sinensis, is difficult to culture in vitro, to transform, and has a large genome, rendering little genomic information available. Recent advances in large-scale RNA sequencing (RNA-seq) provide a fast, cost-effective, and reliable approach to generate large expression datasets for functional genomic analysis, which is especially suitable for non-model species with un-sequenced genomes.ResultsUsing high-throughput Illumina RNA-seq, the transcriptome from poly (A)+ RNA of C. sinensis was analyzed at an unprecedented depth (2.59 gigabase pairs). Approximate 34.5 million reads were obtained, trimmed, and assembled into 127,094 unigenes, with an average length of 355 bp and an N50 of 506 bp, which consisted of 788 contig clusters and 126,306 singletons. This number of unigenes was 10-fold higher than existing C. sinensis sequences deposited in GenBank (as of August 2010). Sequence similarity analyses against six public databases (Uniprot, NR and COGs at NCBI, Pfam, InterPro and KEGG) found 55,088 unigenes that could be annotated with gene descriptions, conserved protein domains, or gene ontology terms. Some of the unigenes were assigned to putative metabolic pathways. Targeted searches using these annotations identified the majority of genes associated with several primary metabolic pathways and natural product pathways that are important to tea quality, such as flavonoid, theanine and caffeine biosynthesis pathways. Novel candidate genes of these secondary pathways were discovered. Comparisons with four previously prepared cDNA libraries revealed that this transcriptome dataset has both a high degree of consistency with previous EST data and an approximate 20 times increase in coverage. Thirteen unigenes related to theanine and flavonoid synthesis were validated. Their expression patterns in different organs of the tea plant were analyzed by RT-PCR and quantitative real time PCR (qRT-PCR).ConclusionsAn extensive transcriptome dataset has been obtained from the deep sequencing of tea plant. The coverage of the transcriptome is comprehensive enough to discover all known genes of several major metabolic pathways. This transcriptome dataset can serve as an important public information platform for gene expression, genomics, and functional genomic studies in C. sinensis.
Background: Low temperature restricts the planting range of all crops, but cold acclimation induces adaption to cold stress in many plants. Camellia sinensis, a perennial evergreen tree that is the source of tea, is mainly grown in warm areas. Camellia sinensis var. sinensis (CSS) has greater cold tolerance than Camellia sinensis var. assamica (CSA). To gain deep insight into the molecular mechanisms underlying cold adaptation, we investigated the physiological responses and transcriptome profiles by RNA-Seq in two tea varieties, cold resistant SCZ (classified as CSS) and cold susceptible YH9 (classified as CSA), during cold acclimation. Results: Under freezing stress, lower relative electrical conductivity and higher chlorophyll fluorescence (Fv/Fm) values were detected in SCZ than in YH9 when subjected to freezing acclimation. During cold treatment, 6072 and 7749 DEGs were observed for SCZ and YH9, respectively. A total of 978 DEGs were common for both SCZ and YH9 during the entire cold acclimation process. DEGs were enriched in pathways of photosynthesis, hormone signal transduction, and transcriptional regulation of plant-pathogen interactions. Further analyses indicated that decreased expression of Lhca2 and higher expression of SnRK2.8 are correlated with cold tolerance in SCZ. Conclusions: Compared with CSA, CSS was significantly more resistant to freezing after cold acclimation, and this increased resistance was associated with an earlier expression of cold-induced genes. Because the greater transcriptional differentiation during cold acclimation in SCZ may contribute to its greater cold tolerance, our studies identify specific genes involved in photoinhibition, ABA signal conduction, and plant immunity that should be studied for understanding the processes involved in cold tolerance. Marker-assisted breeding focused on the allelic variation at these loci provides an avenue for the possible generation of CSA cultivars that have CSS-level cold tolerance.
In human society, which is organized by social hierarchies, resources are usually allocated unequally and based on social status. In this study, we analyze how being endowed with different social statuses in a math competition affects the perception of fairness during asset allocation in a subsequent Ultimatum Game (UG). Behavioral data showed that when participants were in high status, they were more likely to reject unfair UG offers than in low status. This effect of social status correlated with activity in the right anterior insula (rAI) and with the functional connectivity between the rAI and a region in the anterior middle cingulate cortex, indicating that these two brain regions are crucial for integrating contextual factors and social norms during fairness perception. Additionally, there was an interaction between social status and UG offer fairness in the amygdala and thalamus, implicating the role of these regions in the modulation of social status on fairness perception. These results demonstrate the effect of social status on fairness perception and the potential neural underpinnings for this effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.