BackgroundPlant height and leaf angle are important determinants of yield in rice (Oryza sativa L.). Genes involved in regulating plant height and leaf angle were identified in previous studies; however, there are many remaining unknown factors that affect rice architecture.ResultsIn this study, we characterized a dwarf mutant named ds1 with small grain size and decreased leaf angle,selected from an irradiated population of ssp. japonica variety Nanjing35. The ds1 mutant also showed abnormal floral organs. ds1 plants were insensitive to BL treatment and expression of genes related to BR signaling was changed. An F2 population from a cross between ds1 and indica cultivar 93–11 was used to fine map DS1 and to map-based clone the DS1 allele, which encoded an EMF1-like protein that acted as a transcriptional regulator. DS1 was constitutively expressed in various tissues, and especially highly expressed in young leaves, panicles and seeds. We showed that the DS1 protein interacted with auxin response factor 11 (OsARF11), a major transcriptional regulator of plant height and leaf angle, to co-regulate D61/OsBRI1 expression. These findings provide novel insights into understanding the molecular mechanisms by which DS1 integrates auxin and brassinosteroid signaling in rice.ConclusionThe DS1 gene encoded an EMF1-like protein in rice. The ds1 mutation altered the expression of genes related to BR signaling, and ds1 was insensitive to BL treatment. DS1 interacts with OsARF11 to co-regulate OsBRI1 expression.Electronic supplementary materialThe online version of this article (10.1186/s12284-018-0239-9) contains supplementary material, which is available to authorized users.
For efficient plant reproduction, seed dormancy delays seed germination until the environment is suitable for the next generation growth and development. The phytohormone abscisic acid (ABA) plays important role in the induction and maintenance of seed dormancy. Previous studies have identified that WRKY transcription factors can regulate ABA signaling pathway. Here, we identified an Oswrky29 mutant with enhanced dormancy in a screen of T-DNA insertion population. OsWRKY29 is a member of WRKY transcription factor family which located in the nuclear. The genetic analyses showed that both knockout and RNAi lines of OsWRKY29 had enhanced seed dormancy whereas its overexpression lines displayed reduced seed dormancy. When treated with ABA, OsWRKY29 knockout and RNAi lines showed greater sensitivity than its overexpression lines. In addition, the expression levels of ABA positive response factors OsVP1 and OsABF1 were higher in the OsWRKY29 mutants but were lower in its overexpression lines. Further assays showed that OsWRKY29 could bind to the promoters of OsABF1 and OsVP1 to inhibit their expression. In summary, we identified a new ABA signaling repressor OsWRKY29 that represses seed dormancy by directly downregulating the expression of OsABF1 and OsVP1.
A Brd2 allele suppresses heading date by altering the expression of heading date regulators such as OsMADS50 , and also negatively regulates chlorophyll biosynthesis. Heading date and plant height are important determinants of yield in rice (Oryza sativa L.). In this study, we characterized a late heading, dwarf mutant known as lhdd10 selected following ethyl methane sulfonate (EMS)-treatment of ssp. indica cultivar 93-11. lhdd10 showed late heading, dwarfness and slightly darker-green leaves than wild-type 93-11 under long-day and short-day conditions. We isolated lhdd10 by map-based cloning; it encoded a putative FAD-linked oxidoreductase protein (a brassinosteroid biosynthetic gene) that localized to the nucleus. LHDD10 was constitutively expressed in various tissues, but more so in shoot apices and panicles. Our data showed that lhdd10 influences heading date by controlling the expression of heading date regulators, such as OsMADS50 in both LD and SD conditions. lhdd10 also negatively regulated expression of chlorophyll biosynthetic genes to reduce the chlorophyll content. Our data indicated that BRs play important roles in regulating heading date and chlorophyll biosynthesis. This work provides material that will allow study of how BRs regulate heading date in rice.
Grain size is an important determinant of yield potential in crops. We previously demonstrated that natural mutations in the regulatory sequences of qSW5/GW5 confer grain width diversity in rice. However, the biological function of a GW5 homolog, named GW5‐Like (GW5L), remains unknown. In this study, we report on GW5L knockout mutants in Kitaake, a japonica cultivar (cv.) considered to have a weak gw5 variant allele that confers shorter and wider grains. GW5L is evenly expressed in various tissues, and its protein product is localized to the plasma membrane. Biochemical assays verified that GW5L functions in a similar fashion to GW5. It positively regulates brassinosteroid (BR) signaling through repression of the phosphorylation activity of GSK2. Genetic data show that GW5L overexpression in either Kitaake or a GW5 knockout line, Kasaorf3 (indica cv. Kasalath background), causes more slender, longer grains relative to the wild‐type. We also show that GW5L could confer salt stress resistance through an association with calmodulin protein OsCaM1‐1. These findings identify GW5L as a negative regulator of both grain size and salt stress tolerance, and provide a potential target for breeders to improve grain yield and salt stress resistance in rice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.