During operation, the acoustic signal of the drum shearer contains a wealth of information. The monitoring or diagnosis system based on acoustic signal has obvious advantages. However, the signal is challenging to extract and recognize. Therefore, this paper proposes an approach for acoustic signal processing of a shearer based on the parameter optimized variational mode decomposition (VMD) method and a clustering algorithm. First, the particle swarm optimization (PSO) algorithm searched for the best parameter combination of the VMD. According to the results, the approach determined the number of modes and penalty parameters for VMD. Then the improved VMD algorithm decomposed the acoustic signal. It selected the ideal component through the minimum envelope entropy. The PSO was designed to optimize the clustering analysis, and the minimum envelope entropy of the acoustic signal was regarded as the feature for classification. We then use a shearer simulation platform to collect the acoustic signal and use the approach proposed in this paper to process and classify the signal. The experimental results show that the approach proposed can effectively extract the features of the acoustic signal of the shearer. The recognition accuracy of the acoustic signal was high, which has practical application value.
When the shearer cuts coal or rock with different hardness, it will produce corresponding cutting state information. This paper develops a simulation cutting experiment system for the drum shearer based on similarity theory. It took the spiral cutting drum of a shearer as the research target and derived the principal similarity coefficients through the dimensional analysis method. Meanwhile, this paper designed the structure of the cutting power system and hydraulic system. Then, it chose a certain amount of coal powder as an aggregate, cement 325# as cementing material, sand, and water as auxiliary materials to prepare simulated coal samples. The paper adopted the orthogonal experiment method and used a proportion of cement, sand, and water as the influencing factors in designing a simulated coal sample preparation plan. In addition, it utilized the range analysis method to research the influence of various factors on the density and compressive strength of simulated coal samples. Finally, it conducted simulated coal sample cutting tests. The results show that the density of the simulated coal samples is between 1192.59 Kg/m3–1483.51 Kg/m3, and the compressive strength range reaches 0.16 MPa–3.94 MPa. The density of the simulated coal sample is related to the mass proportion of cement and sand. When the ratio gradually increases, the influence of sand increases. Furthermore, the compressive strength is linearly proportional to the proportion of cement. The self-designed simulation cutting experiment system could effectively carry out the relevant experiments and obtain the corresponding cutting condition signals through the sensors. There are differences in vibration signals generated by cutting different strength materials. Extracting the kurtosis value as the characteristic value can distinguish various cutting modes, which can provide a reliable experimental solution for the research of coal-rock identification.
In coal and rock recognition technology, the acquisition of sound signals is affected by background noise. It is challenging to extract cutting features and accurately identify cutting patterns effectively. Therefore, this paper proposes an approach for combined noise reduction of the cutting sound signal based on the improved adaptive noise complete ensemble empirical mode decomposition (ICEEMDAN) and a singular value decomposition (SVD). First, the method used the ICEEMDAN method to decompose the noisy signal into several intrinsic mode functions (IMF). It calculated the correlation coefficient between the IMF component and the noisy signal and then selected the noisy IMF components based on the threshold formula. Meanwhile, this method constructed a Hankel matrix of the noisy IMF component signals. It used SVD technology to obtain the singular values. According to the singular value standard energy spectrum curve, the paper determined the order of the effective singular value and removed the noise component in the signal. Then, the denoised IMF and noiseless IMF components are superimposed and reconstructed to obtain the noise-reduced cutting sound signal. Finally, it applied simulation signal and simulated shearer cutting experiment to verify the performance of the method. The results show that the proposed method can effectively remove the influence of background noise in the signal and retain the characteristic frequencies of the original cutting sound signal. Compared with traditional noise reduction methods, the ICEEMDAN-SVD combined noise reduction method performs better in noise reduction evaluation standards of signal-noise ratio and root mean square error. It achieved a better noise reduction effect, which could help coal and rock recognition technology based on sound signals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.