Ophiopogonin D' (OPD') is a natural compound extracted from Ophiopogon japonicus, which is a plant used in traditional Chinese medicine. Our previous study has indicated that OPD' exhibits antitumor activity against androgen-independent prostate cancer (PCa), but the effects and the underlying molecular mechanism of action of OPD' in androgen-dependent PCa were unclear. In the present study, OPD' induced significant necroptosis in androgen-dependent LNCaP cancer cells by activating receptor-interacting serine/threonine-protein kinase 1 (RIPK1). Exposure to OPD' also increased Fas ligand (FasL)-dependent RIPK1 protein expression. The OPD'-induced necroptosis was inhibited by a RIPK1 inhibitor necrostatin-1, further supporting a role for RIPK1 in the effects of OPD´. The antitumor effects of OPD' were also inhibited by a mixed lineage kinase domain-like protein (MLKL) inhibitor necrosulfonamide. Following treatment with inhibitors of RIPK1 and MLKL, the effects of OPD' on LNCaP cells were inhibited in an additive manner. In addition, co-immunoprecipitation assays demonstrated that OPD' induced RIPK3 upregulation, leading to the assembly of a RIPK3-MLKL complex, which was independent of RIPK1. Furthermore, OPD' increased the expression of Fas-associated death domain, which is required to induce necroptosis in LNCaP cells. OPD' also regulated the expression levels of FasL, androgen receptor and prostate-specific antigen in a RIPK1-dependent manner. These results suggested that OPD' may exhibit potential as an anti-PCa agent by inducing RIPK1-and MLKL-dependent necroptosis.
Alternatively activated (M2) macrophage promotes glioma progression and immune escape as the most immunocyte in glioma microenvironment. Finding out the key protein regulating M2 macrophage polarization is necessary for improving treatment. Whether immunity related GTPase M (IRGM) is involved in glioma development and M2 macrophage polarization is unknown. IRGM and M2 macrophage marker CD206 expression were examined using immunohistochemistry among 35 glioma and 11 non-cancerous brain specimens. We found IRGM scores were positively correlated with CD206 scores in glioma specimens and monocyte proportion in blood samples. A172 glioma cells transfected with either IRGM knock-down lentivirus (Lenti-IRGM) or control lentivirus (Lenti-HK) were subcutaneously injected into nude mice. In vivo, xenografted glioma size of the Lenti-IRGM group was smaller and had weaker fluorescence signal than Lenti-HK control group. Immunofluorescence results showed that there was obviously decreased IRGM, CD206, and IL-8 expression in the mice glioma of Lenti-IRGM group than Lenti-HK control group. In vitro, flow cytometry results showed that M2 polarization from THP-1 cocultured with Lenti-IRGM glioma cells decreased in contrast to that with Lenti-HK glioma cells; there were less interleukin-8 (IL-8) and macrophage inflammation protein 3-a (MIP-3a), but more interleukin-6 (IL-6) in the supernatant of Lenti-IRGM glioma cells than matched control. Western blot and immunofluorescence displayed that IRGM strongly promoted sequestosome-1 (p62/SQSTM1), necrosis factor receptoractivating factor 6 (TRAF6) expression and NF-kB transportation to the nucleus. Realtime PCR results demonstrated IRGM also promoted NF-kB downstream cytokines IL-8 and MIP-3a mRNA expression. These data suggested that IRGM could promote glioma development and M2 macrophage polarization by regulating p62/TRAF6/NF-kB pathway-mediated IL-8 production.
BackgroundRenal cell carcinoma (RCC) account for over 80% of renal malignancies. The most common type of RCC can be classified into three subtypes including clear cell, papillary and chromophobe. ccRCC (the Clear Cell Renal Cell Carcinoma) is the most frequent form and shows variations in genetics and behavior. To improve accuracy and personalized care and increase the cure rate of cancer, molecular typing for individuals is necessary.MethodsWe adopted the genome, transcriptome and methylation HMK450 data of ccRCC in The Cancer Genome Atlas Network in this research. Consensus Clustering algorithm was used to cluster the expression data and three subtypes were found. To further validate our results, we analyzed an independent data set and arrived at a consistent conclusion. Next, we characterized the subtype by unifying genomic and clinical dimensions of ccRCC molecular stratification. We also implemented GSEA between the malignant subtype and the other subtypes to explore latent pathway varieties and WGCNA to discover intratumoral gene interaction network. Moreover, the epigenetic state changes between subgroups on methylation data are discovered and Kaplan-Meier survival analysis was performed to delve the relation between specific genes and prognosis.ResultsWe found a subtype of poor prognosis in clear cell renal cell carcinoma, which is abnormally upregulated in focal adhesions and cytoskeleton related pathways, and the expression of core genes in the pathways are negatively correlated with patient outcomes.ConclusionsOur work of classification schema could provide an applicable framework of molecular typing to ccRCC patients which has implications to influence treatment decisions, judge biological mechanisms involved in ccRCC tumor progression, and potential future drug discovery.Electronic supplementary materialThe online version of this article (10.1186/s12885-018-4176-1) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.