Mass redistribution of the Earth causes variable loading that deforms the solid Earth. While most recent studies using geodetic techniques focus on regions (such as the Amazon basin and the Nepal Himalayas) with large seasonal deformation amplitudes on the order of 1–4 cm due to hydrologic loading, few such studies have been conducted on the regions where the seasonal deformation amplitude is half as large. Here, we use joint GPS and GRACE data to investigate the vertical deformation due to hydrologic loading in the North China Plain, where significant groundwater depletion has been reported. We found that the GPS- and GRACE-derived secular trends and seasonal signals are in good agreement, with an uplift magnitude of 1–2 mm/year and a correlation of 85.0%–98.5%, respectively. This uplift rate is consistent with groundwater depletion rate estimated from GRACE data and in-situ groundwater measurements from earlier report studies; whereas the seasonal hydrologic variation reflects human behavior of groundwater pumping for agriculture irrigation in spring, leading to less water storage in summer than that in the winter season. However, less than 20% of weighted root-mean-squared (WRMS) reductions were detected for all the selected GPS stations when GRACE-derived seasonal deformations were removed from detrended GPS height time series. This discrepancy is probably because the GRACE-derived seasonal signals are large-scale, while the GPS-derived signals are local point measurements.
Alternatively activated (M2) macrophage promotes glioma progression and immune escape as the most immunocyte in glioma microenvironment. Finding out the key protein regulating M2 macrophage polarization is necessary for improving treatment. Whether immunity related GTPase M (IRGM) is involved in glioma development and M2 macrophage polarization is unknown. IRGM and M2 macrophage marker CD206 expression were examined using immunohistochemistry among 35 glioma and 11 non-cancerous brain specimens. We found IRGM scores were positively correlated with CD206 scores in glioma specimens and monocyte proportion in blood samples. A172 glioma cells transfected with either IRGM knock-down lentivirus (Lenti-IRGM) or control lentivirus (Lenti-HK) were subcutaneously injected into nude mice. In vivo, xenografted glioma size of the Lenti-IRGM group was smaller and had weaker fluorescence signal than Lenti-HK control group. Immunofluorescence results showed that there was obviously decreased IRGM, CD206, and IL-8 expression in the mice glioma of Lenti-IRGM group than Lenti-HK control group. In vitro, flow cytometry results showed that M2 polarization from THP-1 cocultured with Lenti-IRGM glioma cells decreased in contrast to that with Lenti-HK glioma cells; there were less interleukin-8 (IL-8) and macrophage inflammation protein 3-a (MIP-3a), but more interleukin-6 (IL-6) in the supernatant of Lenti-IRGM glioma cells than matched control. Western blot and immunofluorescence displayed that IRGM strongly promoted sequestosome-1 (p62/SQSTM1), necrosis factor receptoractivating factor 6 (TRAF6) expression and NF-kB transportation to the nucleus. Realtime PCR results demonstrated IRGM also promoted NF-kB downstream cytokines IL-8 and MIP-3a mRNA expression. These data suggested that IRGM could promote glioma development and M2 macrophage polarization by regulating p62/TRAF6/NF-kB pathway-mediated IL-8 production.
Abstract:The North China Plain (NCP) has been experiencing the most severe groundwater depletion in China, leading to a broad region of vertical motions of the Earth's surface. This paper explores the seasonal and linear trend variations of surface vertical displacements caused by the groundwater changes in NCP from 2009 to 2013 using Global Positioning System (GPS) and Gravity Recovery and Climate Experiment (GRACE) techniques. Results show that the peak-to-peak amplitude of GPS-derived annual variation is about 3.7~6.0 mm and is highly correlated (R > 0.6 for most selected GPS stations) with results from GRACE, which would confirm that the vertical displacements of continuous GPS (CGPS) stations are mainly caused by groundwater storage (GWS) changes in NCP, since GWS is the dominant component of total water storage (TWS) anomalies in this area. The linear trends of selected bedrock-located IGS CGPS stations reveal the distinct GWS changes in period of 2009-2010 (decrease) and 2011-2013 (rebound), which are consistent with results from GRACE-derived GWS anomalies and in situ GWS observations. This result implies that the rate of groundwater depletion in NCP has slowed in recent years. The impacts of geological condition (bedrock or sediment) of CGPS stations to their results are also investigated in this study. Contrasted with the slight linear rates (−0.69~1.5 mm/a) of bedrock-located CGPS stations, the linear rates of sediment-located CGPS stations are between −44 mm/a and −17 mm/a. It is due to the opposite vertical displacements induced by the Earth surface's porous and elastic response to groundwater depletion. Besides, the distinct renewal characteristics of shallow and deep groundwater in NCP are discussed. The GPS-based vertical displacement time series, to some extent, can reflect the quicker recovery of shallow unconfined groundwater than the deep confined groundwater in NCP; through one month earlier to attain the maximum height for CGPS stations nearby shallow groundwater depression cones than those nearby deep groundwater depression cones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.