SUMMARY On 4 and 6 July 2019, an Mw 6.4 foreshock and an Mw 7.1 main shock successively struck the city of Ridgecrest in eastern California. These two events are the most significant earthquake sequences to strike in this part of California for the past 20 yr. We used both continuous global positioning system (GPS) measurements and interferometric synthetic aperture radar (InSAR) images taken by the Sentinel-1 and ALOS-2 satellites in four different viewing geometries to fully map the coseismic surface displacements associated with these two earthquakes. Using these GPS and InSAR measurements both separately and jointly, we inverted data to find the coseismic slip distributions and fault dips caused by the two earthquakes. The GPS-constrained slip models indicate that the Mw 7.1 main shock was predominately controlled by right-lateral motions on a series of northwest-trending faults, while the Mw 6.4 foreshock involved both right-lateral slipping on a northwest-trending fault and left-lateral slipping on a northeast-trending fault. The two earthquakes both generate significant surface slip, with the maximum inferred slip of 5.54 m at the surface. We estimate the cumulative geodetic moment of the two earthquakes to have been 4.93 × 1019 Nm, equivalent to Mw 7.1. Furthermore, our calculations of the changes in static Coulomb stress suggest that the Mw 7.1 main shock was promoted significantly by the Mw 6.4 foreshock. This latest Ridgecrest earthquake sequence ruptured only the northern part of the seismic gap between the 1992 Mw 7.3 Landers earthquake and the 1872 M 7.4–7.9 Owens Valley earthquake. The earthquake risk in this area, therefore, remains very high, considering the significant accumulation of strain in the Eastern California Shear Zone, especially in the southern part of the seismic gap.
Seasonal variations are observed in GPS time series, but are not included in the International Terrestrial Reference Frame (ITRF) models. Unmodeled seasonal variations at sites used for reference frame alignment are aliased into the reference frame parameters and bias all coordinates in the transformed solution. We augment ITRF2008 with seasonal loading models based either on Gravity Recovery and Climate Experiment (GRACE) measurements or a suite of models for atmospheric pressure, continental hydrology, and nontidal ocean loading. We model the seasonal components using either annual and semiannual terms or a nonparametric approach. When we include a seasonal variation model, the weighted root-mean-square misfit after seven-parameter transformation decreases for 70-90% of the daily GPS solutions depending on the network and seasonal model used, relative to a baseline case using ITRF2008. When seasonal variations are included in the reference frame solution, the observed seasonal variations are more consistent with the GRACE-based model at 80-85% of the GPS sites that were not used in the frame alignment. The suite of forward models performs nearly as well as the GRACE-based model for North America, but substantially worse for other parts of the world. We interpret these findings to mean that the use of ITRF2008 without seasonal terms causes the amplitude of seasonal variations in the coordinate time series to be damped down relative to the true loading deformation and that the observed GPS time series are more consistent with a TRF model that includes seasonal variations. At present, a seasonal model derived from GRACE captures seasonal variations more faithfully than one based on hydrologic models.
The Pishan, Xinjiang, earthquake on 3 July 2015 is the one of largest events (Mw 6–7) that has occurred along the western Kunlun Shan, northwestern edge of the Tibetan Plateau in recent time. It involved blind thrusting at a shallow depth beneath the range front, providing a rare chance to gain insights into the interaction between the Tarim Basin and the Tibetan Plateau. Here we present coseismic ground displacements acquired by high‐resolution ALOS‐2 SAR imagery and derived from GPS resurveys on several near‐field geodetic markers after the event. We observed a maximum displacement exceeding 10 cm in the epicentral region. Analysis of the data based on a finite fault model indicates that coseismic slip occurred on a subsurface plane of 22 km × 8 km in size with a dip of about 27° to the north and a strike of 114°, representing partial break of one ramp fault buried in Paleozoic strata at 8–16 km depths beneath the foothill of the western Kunlun Shan. This blind rupture is characterized largely by a compact thrusting patch with a peak slip of 0.63 m, resulting in a stress drop of 2.3 MPa. The source model yields a geodetic moment of 5.05 × 1018 N · m, corresponding to Mw 6.4. The Pishan earthquake suggests a northward migration of deformation front of the Tibetan Plateau onto the Tarim Basin. Our finding highlights slip along ramp‐décollement faults to build up the western Kunlun Shan as the Tarim slab is subducting beneath western Tibet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.