Harnessing parity–time symmetry with balanced gain and loss profiles has created a variety of opportunities in electronics from wireless energy transfer to telemetry sensing and topological defect engineering. However, existing implementations often employ ad hoc approaches at low operating frequencies and are unable to accommodate large-scale integration. Here we report a fully integrated realization of parity–time symmetry in a standard complementary metal–oxide–semiconductor process technology. Our work demonstrates salient parity–time symmetry features such as phase transition as well as the ability to manipulate broadband microwave generation and propagation beyond the limitations encountered by existing schemes. The system shows 2.1 times the bandwidth and 30% noise reduction compared to conventional microwave generation in the oscillatory mode, and displays large non-reciprocal microwave transport from 2.75 to 3.10 GHz in the non-oscillatory mode due to enhanced nonlinearities. This approach could enrich integrated circuit design methodology beyond well-established performance limits and enable the use of scalable integrated circuit technology to study topological effects in high-dimensional non-Hermitian systems.
On‐chip optical nonreciprocity is one of the essential functions to fully advance the development of integrated optical systems, which remains technically challenging in many aspects. There is a great need for mechanisms and approaches to facilitate the large‐scale implementation of nonreciprocal light propagation. Recently, unconventional phenomena, such as chiral optical modes and directional light propagation, have been unraveled at exceptional points (EPs), which are unique degeneracies in the energy spectrum and eigenspace of non‐Hermitian systems. Here, this work theoretically and experimentally demonstrates that by steering a single microresonator with thermo‐optic nonlinearity to chiral EPs, nonreciprocal light propagation is achieved with an isolation ratio up to 24 dB and insertion loss less than 0.5 dB. The nonreciprocity is dependent on the chirality and could be optimized near the EPs. Their results pave new avenues for the nonreciprocal control of light propagation enabled by non‐Hermitian degeneracies and hold great potential for microscale and nanoscale on‐chip nonreciprocal devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.