BackgroundIgA nephropathy (IgAN) is the most frequent glomerulonephritis in inflammatory bowel disease (IBD). However, the inter-relational mechanisms between them are still unclear. This study aimed to explore the shared gene effects and potential immune mechanisms in IgAN and IBD.MethodsThe microarray data of IgAN and IBD in the Gene Expression Omnibus (GEO) database were downloaded. The differential expression analysis was used to identify the shared differentially expressed genes (SDEGs). Besides, the shared transcription factors (TFs) and microRNAs (miRNAs) in IgAN and IBD were screened using humanTFDB, HMDD, ENCODE, JASPAR, and ChEA databases. Moreover, weighted gene co-expression network analysis (WGCNA) was used to identify the shared immune-related genes (SIRGs) related to IgAN and IBD, and R software package org.hs.eg.db (Version3.1.0) were used to identify common immune pathways in IgAN and IBD.ResultsIn this study, 64 SDEGs and 28 SIRGs were identified, and the area under the receiver operating characteristic curve (ROC) of 64 SDEGs was calculated and two genes (MVP, PDXK) with high area under the curve (AUC) in both IgAN and IBD were screened out as potential diagnostic biomarkers. We then screened 3 shared TFs (SRY, MEF2D and SREBF1) and 3 miRNAs (hsa-miR-146, hsa-miR-21 and hsa-miR-320), and further found that the immune pathways of 64SDEGs, 28SIRGs and 3miRNAs were mainly including B cell receptor signaling pathway, FcγR-mediated phagocytosis, IL-17 signaling pathway, toll-like receptor signaling pathway, TNF signaling pathway, TRP channels, T cell receptor signaling pathway, Th17 cell differentiation, and cytokine-cytokine receptor interaction.ConclusionOur work revealed the differentiation of Th17 cells may mediate the abnormal humoral immunity in IgAN and IBD patients and identified novel gene candidates that could be used as biomarkers or potential therapeutic targets.
BackgroundIgA nephropathy (IgAN) is an autoimmune disease that affects people of any age and is an important cause of end-stage renal disease. However, the pathogenesis and pathophysiology of IgAN is not clear. This article aimed to explore the immune-mediated inflammation and genetic mechanisms in IgAN.MethodsThe transcriptome sequencing data of IgAN glomeruli in the Gene Expression Omnibus database were downloaded. Single-sample gene set enrichment analysis was used to estimate the immune microenvironment of the merged microarray data and GSE141295. IgAN samples were divided into two clusters by cluster analysis. “limma” and “DEseq2” package in R were used to identify differentially expressed genes (DEGs). The weighted gene co-expression network analysis (WGCNA) was used to identify the co-expression modules related to inflammation in IgAN. R software package “clusterProfiler” was used for enrichment analysis, whereas Short Time-Series Expression Miner (STEM) analysis was used to identify the trend of gene expression. Machine-learn (ML) was performed using the shiny app. Finally, Drug Signatures Database (DSigDB) was used to identify potential molecules for treating IgAN.ResultsThe infiltration of macrophages in IgAN glomeruli was increased, whereas CD4+ T cells, especially inducedregulatory T cells (iTregs) were decreased. A total of 1,104 common DEGs were identified from the merged data and GSE141295. Brown module was identified to have the highest inflammatory correlation with IgAN using WGCNA, and 15 hub genes were screened from this module. Among these 15 hub genes, 14 increased with the severity of IgAN inflammation based on STEM analysis. Neural network (nnet) is considered as the best model to predict the severity of IgAN. Fucose identified from DSigDB has a potential biological activity to treat IgAN.ConclusionThe increase of macrophages and the decrease of iTregs in glomeruli represent the immune-mediated inflammation of IgAN, and fucose may be a potential therapeutic molecule against IgAN because it affects genes involved in the severe inflammation of IgAN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.