To examine the relationship between gene expression and DNA methylation, transcriptionally activated genes were screened in hypomethylated transgenic tobacco plants expressing an anti-DNA methyltransferase sequence. Among 16 genes initially identified, one clone was found to encode a glycerophosphodiesterase-like protein (NtGPDL), earlier reported to be responsive to aluminium stress. When detached leaves from wild type tobacco plants were treated with aluminium, NtGPDL transcripts were induced within 6 h, and corresponding genomic loci were demethylated at CCGG sites within 1 h. Direct bisulfite methylation mapping revealed that CG sites in coding regions were selectively demethylated, and that promoter regions were totally unmethylated regardless of the stress. Salt and low temperature treatments also induced similar demethylation patterns. Such effects could be attributable to oxidative stress, since reactive oxygen species generated by paraquat efficiently induced the same pattern of demethylation at coding regions. Pathogen infection induced neither transcripts nor genomic demethylation. These results suggested a close correlation between methylation and expression of NtGPDL upon abiotic stresses with a cause-effect relationship. Since DNA methylation is linked to histone modification, it is conceivable that demethylation at coding regions might induce alteration of chromatin structure, thereby enhancing transcription. We propose that environmental responses of plants are partly mediated through active alteration of the DNA methylation status.
Pumpkins have considerable variation in nutrient contents depending on the cultivation environment, species, or part. In this study, the general chemical compositions and some bioactive components, such as tocopherols, carotenoids, and β-sitosterol, were analyzed in three major species of pumpkin (Cucurbitaceae pepo, C. moschata, and C. maxima) grown in Korea and also in three parts (peel, flesh, and seed) of each pumpkin species. C. maxima had significantly more carbohydrate, protein, fat, and fiber than C. pepo or C. moschata (P < 0.05). The moisture content as well as the amino acid and arginine contents in all parts of the pumpkin was highest in C. pepo. The major fatty acids in the seeds were palmitic, stearic, oleic, and linoleic acids. C. pepo and C. moschata seeds had significantly more γ-tocopherol than C. maxima, whose seeds had the highest β-carotene content. C. pepo seeds had significantly more β-sitosterol than the others. Nutrient compositions differed considerably among the pumpkin species and parts. These results will be useful in updating the nutrient compositions of pumpkin in the Korean food composition database. Additional analyses of various pumpkins grown in different years and in different areas of Korea are needed.
Activation of AMP-activated protein kinase (AMPK), a physiological cellular energy sensor, strongly suppresses cell proliferation in both nonmalignant and tumor cells. This study demonstrates the mechanism of quercetin-induced apoptosis in HT-29 colon cancer cells. Treatment of cells with quercetin significantly decreased cell viability in a dose-dependent manner. Notably, quercetin increased cell cycle arrest in the G1 phase and up-regulated apoptosis-related proteins, such as AMPK, p53, and p21, within 48 h. Furthermore, in vivo experiments showed that quercetin treatment resulted in a significant reduction in tumor volume over 6 weeks, and apoptosis-related protein induction by quercetin was significantly higher in the 100 mg/kg treated group compared to the control group. All of these results indicate that quercetin induces apoptosis via AMPK activation and p53-dependent apoptotic cell death in HT-29 colon cancer cells and that it may be a potential chemopreventive or therapeutic agent against HT-29 colon cancer.
Flavonols are compounds that have been shown to possess potent anti-inflammatory effects in cellular and animal models of inflammation. In the present study, the anti-inflammatory effects and mechanisms of two natural flavonols, quercetin and galangin, in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages were investigated. It was identified that quercetin and galangin markedly reduced the production of nitric oxide (NO), inducible NO synthase and interleukin-6, and the nuclear translocation of nuclear factor-κB (NF-κB). In addition, LPS-induced activation of extracellular signal-regulated kinase 1/2 (Erk1/2) and c-Jun N-terminal kinase (JNK) was suppressed by quercetin and galangin. Taken together, these data implied that NF-κB, Erk1/2 and JNK may be potential molecular targets of quercetin and galangin in an LPS-induced inflammatory response. Subsequently, the effects of oral administration of quercetin or galangin, either alone or in combination, in a 2,4-dinitrochlorobenzene-induced atopic dermatitis (AD) mouse model were investigated. As a result, measurements of ear thickness and the levels of serum immunoglobulin E, and histological analysis revealed that the two flavonols led to a decrease in inflammation, whereas, in combination, they were even more effective. These results suggested that quercetin and galangin may be promising therapeutic agents for AD. Additionally, their combination may be a novel therapeutic strategy for the prevention of AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.