Social networks are quickly becoming the primary medium for discussing what is happening around real-world events. The information that is generated on social platforms like Twitter can produce rich data streams for immediate insights into ongoing matters and the conversations around them. To tackle the problem of event detection, we model events as a list of clusters of trending entities over time. We describe a real-time system for discovering events that is modular in design and novel in scale and speed: it applies clustering on a large stream with millions of entities per minute and produces a dynamically updated set of events. In order to assess clustering methodologies, we build an evaluation dataset derived from a snapshot of the full Twitter Firehose and propose novel metrics for measuring clustering quality. Through experiments and system profiling, we highlight key results from the offline and online pipelines. Finally, we visualize a high profile event on Twitter to show the importance of modeling the evolution of events, especially those detected from social data streams.
On most current websites untrustworthy or spammy identities are easily created. Existing proposals to detect untrustworthy identities rely on reputation signals obtained by observing the activities of identities over time within a single site or domain; thus, there is a time lag before which websites cannot easily distinguish attackers and legitimate users. In this paper, we investigate the feasibility of leveraging information about identities that is aggregated across multiple domains to reason about their trustworthiness. Our key insight is that while honest users naturally maintain identities across multiple domains (where they have proven their trustworthiness and have acquired reputation over time), attackers are discouraged by the additional effort and costs to do the same. We propose a flexible framework to transfer trust between domains that can be implemented in today's systems without significant loss of privacy or significant implementation overheads. We demonstrate the potential for inter-domain trust assessment using extensive data collected from Pinterest, Facebook, and Twitter. Our results show that newer domains such as Pinterest can benefit by transferring trust from more established domains such as Facebook and Twitter by being able to declare more users as likely to be trustworthy much earlier on (approx. one year earlier). Copyright is held by the International World Wide Web Conference Committee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the author's site if the Material is used in electronic media.
This paper investigates when users create profiles in different social networks, whether they are redundant expressions of the same persona, or they are adapted to each platform. Using the personal webpages of 116,998 users on About.me, we identify and extract matched user profiles on several major social networks including Facebook, Twitter, LinkedIn, and Instagram. We find evidence for distinct site-specific norms, such as differences in the language used in the text of the profile self-description, and the kind of picture used as profile image. By learning a model that robustly identifies the platform given a user’s profile image (0.657–0.829 AUC) or self-description (0.608–0.847 AUC), we confirm that users do adapt their behaviour to individual platforms in an identifiable and learnable manner. However, different genders and age groups adapt their behaviour differently from each other, and these differences are, in general, consistent across different platforms. We show that differences in social profile construction correspond to differences in how formal or informal the platform is.
How does one develop a new online community that is highly engaging to each user and promotes social interaction? A number of websites offer friend-finding features that help users bootstrap social networks on the website by copying links from an established network like Facebook or Twitter. This paper quantifies the extent to which such social bootstrapping is effective in enhancing a social experience of the website. First, we develop a stylised analytical model that suggests that copying tends to produce a giant connected component (i.e., a connected community) quickly and preserves properties such as reciprocity and clustering, up to a linear multiplicative factor. Second, we use data from two websites, Pinterest and Last.fm, to empirically compare the subgraph of links copied from Facebook to links created natively. We find that the copied subgraph has a giant component, higher reciprocity and clustering, and confirm that the copied connections see higher social interactions. However, the need for copying diminishes as users become more active and influential. Such users tend to create links natively on the website, to users who are more similar to them than their Facebook friends. Our findings give new insights into understanding how bootstrapping from established social networks can help engage new users by enhancing social interactivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.