In natural language processing (NLP), Transformer is widely used and has reached the state-of-the-art level in numerous NLP tasks such as language modeling, summarization, and classification. Moreover, a variational autoencoder (VAE) is an efficient generative model in representation learning, combining deep learning with statistical inference in encoded representations. However, the use of VAE in natural language processing often brings forth practical difficulties such as a posterior collapse, also known as Kullback–Leibler (KL) vanishing. To mitigate this problem, while taking advantage of the parallelization of language data processing, we propose a new language representation model as the integration of two seemingly different deep learning models, which is a Transformer model solely coupled with a variational autoencoder. We compare the proposed model with previous works, such as a VAE connected with a recurrent neural network (RNN). Our experiments with four real-life datasets show that implementation with KL annealing mitigates posterior collapses. The results also show that the proposed Transformer model outperforms RNN-based models in reconstruction and representation learning, and that the encoded representations of the proposed model are more informative than other tested models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.