Most vehicle controllers are developed and verified with V-model. There are several traditional methods in the automotive industry called “X-in-the-Loop (XIL)”. However, the validation of advanced driver assistance system (ADAS) controllers is more complicated and needs more environmental resources because the controller interacts with the external environment of the vehicle. Vehicle-in-the-Loop (VIL) is a recently being developed approach for simulating ADAS vehicles that ensures the safety of critical test scenarios in real-world testing using virtual environments. This new test method needs both properties of traditional computer simulations and real-world vehicle tests. This paper presents a Vehicle-in-the-Loop topology for execution in global Coordinates system. Also, it has a modular structure with four parts: synchronization module, virtual environment, sensor emulator and visualizer, so each part can be developed and modified separately in combination with other parts. This structure of VIL is expected to save maintenance time and cost. This paper shows its acceptability by testing ADAS on both a real and the VIL system.
Vehicle control systems such as ESC (electronic stability control), MDPS (motor-driven power steering), and ECS (electronically controlled suspension) improve vehicle stability, driver comfort, and safety. Vehicle control systems such as ACC (adaptive cruise control), LKA (lane-keeping assistance), and AEB (autonomous emergency braking) have also been actively studied in recent years as functions that assist drivers to a higher level. These DASs (driver assistance systems) are implemented using vehicle sensors that observe vehicle status and send signals to the ECU (electronic control unit). Therefore, the failure of each system sensor affects the function of the system, which not only causes discomfort to the driver but also increases the risk of accidents. In this paper, we propose a new method to detect and isolate faults in a vehicle control system. The proposed method calculates the constraints and residuals of 12 systems by applying the model-based fault diagnosis method to the sensor of the chassis system. To solve the inaccuracy in detecting and isolating sensor failure, we applied residual sensitivity to a threshold that determines whether faults occur. Moreover, we applied a sensitivity analysis to the parameters semi-correlation table to derive a fault isolation table. To validate the FDI (fault detection and isolation) algorithm developed in this study, fault signals were injected and verified in the HILS (hardware-in-the-loop simulation) environment using an RCP (rapid control prototyping) device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.